京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据价值的再思考 垄断开放大不同_数据分析师培训
大数据的价值已经不言而喻。从商业价值看,无论是电商的精准推荐,还是百度的网盟推广,亦或微博的精准营销,普通用户都能够直观体会到大数据给用户和商家带来的商业价值。从社会价值看,大数据让用户有能力了解社会热点、预测流行趋势或是环境变化。随着大数据深入应用,这种价值还在不断地发酵,在社会的各个领域,如金融、制造、能源、商贸、物流、农业、气象等等,也在全球的不同地区,不同类型的数据集被相互连接,产生了对各个领域的前所未有的洞察力和预测力,各种基于数据的商业模式随着被设计出来,带来了巨大的经济和社会价值。
正因为这种价值,行业、企业和政府都在竭尽力量采集数据、占有数据和利用数据。这其中很大部分数据被大家认为是公共数据(当然也可以理解为属于某家网站,只是网站都按照行业规则把数据开放了出来),当然也有很多数据是企业内部服务器上的日志数据,还有各种交易数据,这部分数据企业一直没有开放,被认为是属于企业的。政府和企业也有很多线下采集的数据,出于各自利益的考虑,这部分数据被很有限地开放,大部分数据没有开放。政府部门说,为了安全起见,这些数据只属于我,阿里说淘宝上的数据是我的,新浪也说微博数据是我的,……,于是所有所有企业挖空心思采集数据、占有数据。哪怕重复工作,造成巨大浪费。BAT甚至四面出击,希望囊括天下所有的数据,但靠自身的力量,这做得到吗?
这里产生了一个严重的问题!数据的割裂和数据垄断出现了。我们要问,今天的大数据是怎么来的?主要来自互联网。为什么有互联网?因为数据需要在不同计算机、不同用户、不同国家之间进行交流和共享。因为数据共享的需求,产生了互联网,因为互联网才产生了大数据。数据本来就在那里,就应该在一个共享开放的互联网大池子里,应该是属于全球互联网的,也是属于大家的,没有必要每家互联网企业再去复制互联网中的一个个数据的拷贝。但出于商业或利益或其他层面的考虑,互联网中的数据被圈了起来,贴上了私人财产,非请莫入的标签。于是,如今的大数据被各类商业机构占有、控制了,成了这些机构的资源、资产和核心竞争力,成了他们手中的宝贝,不肯轻易共享,也不肯开放。这样的趋势延续下去,大数据就被大大小小的数据商垄断着、割裂着,成了一个个新的“大数据孤岛”,势必让大数据的连接价值被大打折扣。因为,这违反了数据价值的本质,数据的价值来自于开放、连接和共享,解决的是信息的不对称。大数据的垄断与大数据的本质背道而驰,最终毁掉的是大数据的价值!
数据交易是解决数据孤岛的一种市场机制。但目前看,大数据垄断所造成的大数据资源的贫富差距太大,大数据的交易就还是富人之间的游戏,普通屌丝和中小企业,只能享受很微不足道的数据红利。大数据领域的很多创新创业企业也因为没有数据,创新创业的动力被极大地打击。长此以往,大数据鸿沟会越来越深!
毕竟,大数据原本是互联网上的一种开放资源。应当回归开放的本性。政府要带头开放。但公共数据掌握在互联网公司手中,真正伟大的互联网公司应该带头积极开放数据,我们对BAT有莫大的期待。各种数据开放组织会诞生出来,他们通过社交网络联合起来,能够促进数据的开放和共享。
真正的大数据商业模式的创新是建立在数据开放和共享基础上的二次创新,这才能真正激发大数据的生产力。就像互联网门户的当年,内容收费的门户网站纷纷垮掉,内容免费的网站蓬勃发展一样。真正推动大数据开放的公司和组织会健康地活下来,背道而驰的大数据垄断企业迟早会被颠覆,会轰然垮掉。颠覆大数据垄断者的必定是大数据开放的倡导者和践行者。大数据时代的BAT必然也产生自拥有数据开放和共享思维的、真正的大数据思维的大数据创业公司。
让大数据回归开放、共享的本性,大数据的经济和社会价值会更加超乎想像。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17