
大数据张开“乌鸦嘴”_数据分析师
里约当地时间上周五,2016年里约奥运会迎来倒计时500天。在里约,中国健儿将取得怎样的成绩?奖牌榜又将是何格局?关于这些,国际奥委会官方数据提供商、著名的荷兰体育数据统计公司Infostrada给出了经过科学分析后的奖牌预测榜。在这份预测的榜单中,中国代表团将以28金28银20铜的成绩,继续排在美国队之后、位列奖牌榜第二位,但金牌数和奖牌总数分别较伦敦奥运会缩水10枚和12枚。
这份奖牌榜详细预测到每个项目的金银铜牌甚至是前八名获得者,根据每位选手在本奥运周期参赛的表现预测得出,参赛数量对成绩排名有比较大的影响。被看低的还不只是中国队,男子百米纪录保持者、“闪电”博尔特被预测在里约将马失前蹄,只能获得一枚银牌……
曾准确预测刘翔的失败
总部位于荷兰小镇纽沃海根的Infostrada公司长期负责奥运会实时数据提供,也是包括北京奥运会在内的多届大赛官方数据提供商。长期以来,它对全世界各奥运项目最优秀的运动员进行成绩追踪、分析和统算,并每月更新数据。
Infostrada的首席数据分析师西蒙·格里夫告诉CNN,这都归功于他们那台名叫“Maggie”的超级计算机。“里约奥运会28个竞赛大项近9年来所有有价值的比赛结果和参赛个体的数据都会源源不断地被录入,所有项目的前八名都会按照不同的分值成为数据,汇总为各个国家地区的虚拟奖牌数。”西蒙称,他们每个月都会根据赛事信息更新预测榜。从2011年开始,Infostrada公司就先后对伦敦奥运会进行预测。2011年3月,在伦敦奥运会倒计时500天后,Infostrada随即推出了预测奖牌榜,当时预测中国队以27枚金牌、84枚奖牌列美国队之后,排名奖牌榜第二名。而更新到了2012年3月,他们实时预测中国队的金牌数将达到了35枚,最后的误差仅在3枚(最终中国队以38金位列金牌榜第二)。更为惊人的是,当时他们就预测了刘翔将不会在男子110米栏的决赛名单(即前八名)内,结果刘翔果然因伤摔倒在预赛的栏架前。
不过,最令Infostrada夸耀的是,他们早在2011年3月就预测英国队将以65枚奖牌位居奖牌榜第3位,并预测美国、中国、英国和俄罗斯四队将列前4位,这与最终排名完全一致。
孙杨、博尔特或意外失金
这份里约奥运会虚拟奖牌榜还对每个国家的夺金项目进行了详细的预测:中国队的夺金优势依然集中在跳水、乒乓球和羽毛球中。按照Infostrada的预测,三大项仅仅只会丢掉男子双人十米跳台和羽毛球男双这两枚金牌。而张继科和刘诗雯则被视作男女单打夺金的人选,而羽毛球男单则是谌龙摘金,林丹夺得铜牌。在Infostrada看来,中国体操队和举重队的奖牌将缩水,体操男子单项更是颗粒无收,射击队则将射落3金。在伦敦奥运崛起的中国游泳也不被看好,仅仅只有孙杨被看好卫冕男子400米自由泳,而他擅长的1500米自由泳则意外失金。
在这份预测奖牌榜中,最令人吃惊的是世界第一飞人博尔特将无缘实现男子百米三连冠,而美国老将加特林则将夺得百米金牌。西蒙解释说,尽管过去十年中,牙买加人几乎统治了男子短跑项目,但因为他从2013年起,参赛极少,因此在他们的电脑数据分析库里,缺乏足够的令人信服的优势。“如果在今夏的北京世锦赛上,博尔特有不俗的发挥,那么这套一直在工作的数据分析体系依然会把博尔特放在夺金的位置上。”
中国花游、自行车有望首次夺金
Infostrada还预测到在里约,中国队将在花样游泳和自行车项目上取得历史性突破。黄雪辰/孙文雁被看好在花样游泳双人项目摘金,而中国地自行车女子团体也有望为自行车项目拿下历史第一金。三大球项目中,惟有郎平带领的中国女排有望收获一枚铜牌。不过Infostrada也承认,兴奋剂问题并不在这套分析系统中,因此这也是他们在预测中无法规避的问题。首席数据分析师西蒙·格里夫表示,他们已经尽力做到专业和科学,很多退役、被禁赛或死亡的运动员很快就会在预测榜中被“下架”。
然而,竞技体育的最大魅力就在于不确定性,注定这份预测不可能完全准确。例如Infostrada预测林丹、孙杨的单项成绩都不算突出,但平日适度调整而“大赛发力”的林丹、孙杨这样比赛型的选手仍有可能力挫劲敌夺冠。虚拟奖牌榜只是基于事实分析,为教练员、媒体等提供一份参考数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29