
网络谣言:大数据显示83%的由男性制造 女性更愿传谣
昨天是愚人节,一场针对如何甄别网络谣言的“辟谣大会”在中山大学举办。记者获悉,微信每天收到用户发起的谣言举报就有3万次,日均谣言拦截量达到210万次。中山大学的研究显示,微信谣言周一、周二、周三和周六四天是举报高峰,谣言在这四天也是格外忙。
在现场分享中,中山大学传播与设计学院院长张志安表示,微信谣言主要集中在食品安全、人身安全、疾病三个领域。在时间轴上发现,周一、周二、周三和周六是谣言散布的高发期,而数字夸大、图片夸张的文章是谣言最常使用的方式。张志安表示,对于伪装“高大上”权威感的文章,公众一定要小心辨别。
“从大数据分析来看,谣言具有‘六个面孔’”, 知微CEO于霄博士利用大数据对谣言进行了分析,他指出,假借权威、捏造数据、制造恐慌、嫁接图片、偷换概念、直击刚需等是谣言传播常用的手段。但是,生产谣言易,粉碎谣言难。他指出,谣言产生后,就像癌症一样难以清除,具备传播周期长、传播范围广的特点,大大增加了辟谣难度。“真相开始传播时,谣言已经跑了半个地球。”于霄说。
数据显示,在微信、微博和新闻客户端等谣言的制造和传播中,男女作出的“贡献”极为不同,男性制造了谣言中的83%,而女性只占17%。不过,在谣言传播过程中,女性会相对更愿意传播。
针对谣言如何粉碎, 果壳网主编徐来向三百多位现场的听众分享了果壳网辟谣的经验。他指出,以分辨难度更高的科学谣言为例,分析谣言的传播方式、谣言来源之后,果壳网会通过发现选题、拆解话题、查找文献的过程,来开展辟谣工作。授人以鱼不如授人以渔,徐来说:“查明信息出处、信息中的原始人名、机构名,向专业人士请教,学会这几项本领,人人就都有台谣言粉碎机。”
微信日均谣言 拦截量达210万次
“谣言虽然难治,但是也要一管到底。”微信安全负责人杨光作为此次辟谣大会的最后一位嘉宾,用“死磕到底”来表明微信对于整治网络谣言的态度,在现场分享中,杨光还补充了微信朋友圈谣言的判定标准与规则,从规范和平台安全维护方面把好第一关。
杨光介绍,微信每天收到用户发起的谣言举报就有3万次,谣言样本库积累的种子量达到30万个,日均谣言拦截量达到210万次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15