京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电信运营商大数据蓄势待发 大数据公司投资逻辑
电信运营商大数据蓄势待发
电信运营商积累了庞大的数据资源,大数据金矿价值凸显。而互联网巨头已在数据变现的道路上大踏步前进,摆在运营商面前的一条出路便是管道智能化。通过大力推进“智能管道”建设,增加附加值,大规模地发展增值服务。由于拥有大量数据资源,运营商通过产业链的广泛合作,相关产业链的公司与运营商共建平台,仍然有着巨大的发展空间。另外,产业链相关公司垂直化拓展其数据挖掘、分析及营销能力也大有可为。
大数据运营成必然选择
对于运营商来看,被以BAT为代表的互联网巨头及OTT企业“管道化”的趋势已不可避免,同时互联网巨头凭借自身庞大的数据资产已在数据变现的道路上大踏步前进,这将进一步边缘化运营商的地位。摆在运营商面前的一条出路,便是管道智能化。
随着网络建设的不断发展,运营商的语音业务收费越来越低,甚至呈现逐渐免费的趋势,数据流量经营将成为运营商的主要方向。从率先开展4G建设的中移动业务结构变化便可窥视。2014年前三季度中移动语音和短信、彩信业务继续下滑,总通话分钟数比上年同期下降0.3%,短信使用量比上年同期下降20.2%;但同期移动网络数据流量比上年同期增长98.6%,几乎是去年同期的两倍,流量业务在营收中占据的比例越来越大。按照现有数据预测,到2016年,中移动语音、短信收入占比将从2011年的67%降至40%,而数据流量和数字服务的收入将增至60%,成为业务收入主体。数据流量经营对运营商的重要性越来越大,关系到运营商的生存价值甚至是生存问题。
我们认为运营商拥有任何移动互联网公司都无法比拟的海量数据,大数据金矿价值凸显,由流量经营进入大数据运营已成为大势所趋。
从目前的情况看,电信运营商与以BAT为代表的互联网企业在增值服务上并不具有竞争优势,但从后向的行业应用及大量的数据资源来看,运营商通过产业链的广泛合作仍然有着巨大的发展空间。同时,由于涉及到政策模糊、用户隐私、技术成本等因素影响,运营商大数据掘金之路目前仍然曲折。但不可否认的是,运营商拥有任何移动互联网公司都无法比拟的海量数据,大数据金矿价值凸显,由语音经营走向流量经营进而进入大数据运营已成为大势所趋,空间巨大。
大数据运营基础架构
目前,运营商在大数据经营方面尚未形成明确的盈利模式,还处于“摸着石头过河”阶段。借鉴国外运营商的运行模式,结合信令数据、DPI技术、B+O域数据整合等可洞析大数据运营可能的方向。
全球运营商已经开始为掘金大数据做准备。电信与媒体市场调研公司Informa Telecoms &; Media在2013年的调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右(我国运营商目前投入占比不足1%),成为运营商的一项战略性优势。国外运营商已经做了一些很好的尝试,美国AT&;T位置数据货币化、日本NTT Docomo创新医疗行业的社会化整合、Verizon数据仓库促进精准营销、德国电信智能网络培育新增长点、Telefónica大数据支撑用户体验优化、Vodafone动态数据仓库支持商业决策、法国电信数据分析改善服务水平、KDDI商业WiFi运营等,都是有借鉴意义的案例。
信令数据用以实现网优及获取位置信息。信令实际上就是一种用于控制的信号。语音经营时代,通话质量对运营商来说是至关重要的指标。运营商通过对信令进行监测,深层次支撑网络优化、精确故障定位。随着2G、3G、4G的逐步建设,运营商进入流量经营时代,通过信令数据可以规划基站和热点的建设,还可以对已有基础的效率和成本进行评估,用以增减基站建设以实现更高的网络效率。流量经营时代,上网流量的监测需求变得更为突出,但信令数据作为网络优化必不可缺的环节,加之通过进一步发掘信令数据所采集的位置信息,对运营商大数据运营提供了非常有意义的基础数据。基于这些数据的价值挖掘,是目前较为清晰的一个发展方向。
DPI已经在流量管理、安全和网络分析等方面成功开展,同时能够对网络数据包进行内容分析。通常的DPI解决方案能够为不同的应用程序提供深度数据包检测。DPI能够检测出数据包的内容及有效负载并且能够提取出内容级别的信息,如恶意软件、具体数据和应用程序类型。运营商均已充分认识到DPI的巨大价值,早已开始大规模招标建设、与第三方服务机构合作,4G带来的流量爆发更为DPI发挥巨大价值提供了广阔空间,因此,充分挖掘DPI的巨大潜力将给运营商带来巨大的效益。
运营商网内数据主要来源于业务平台、基础网络、支撑系统(包括O域(运营域)、B域(业务域)、M域(管理域))三大IT支撑系统。每个域由多个子系统组成,各域数据分别存放在多个生产数据库中,目前数据库的总量已达上百个,B+O域有效数据存储量占总量的80%以上。通过整合B域和O域的数据,可大幅提升信息共享能力,提高网络优化和规划建设的效率和有效性,有利于进一步的数据分析,尤其是对流量经营有着重要的意义,提升数据业务流量经营的用户行为与业务洞察能力,通过平台建设初步形成“大数据”洞察的跨域(B域/O域)分析架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08