
电信运营商大数据蓄势待发 大数据公司投资逻辑
电信运营商大数据蓄势待发
电信运营商积累了庞大的数据资源,大数据金矿价值凸显。而互联网巨头已在数据变现的道路上大踏步前进,摆在运营商面前的一条出路便是管道智能化。通过大力推进“智能管道”建设,增加附加值,大规模地发展增值服务。由于拥有大量数据资源,运营商通过产业链的广泛合作,相关产业链的公司与运营商共建平台,仍然有着巨大的发展空间。另外,产业链相关公司垂直化拓展其数据挖掘、分析及营销能力也大有可为。
大数据运营成必然选择
对于运营商来看,被以BAT为代表的互联网巨头及OTT企业“管道化”的趋势已不可避免,同时互联网巨头凭借自身庞大的数据资产已在数据变现的道路上大踏步前进,这将进一步边缘化运营商的地位。摆在运营商面前的一条出路,便是管道智能化。
随着网络建设的不断发展,运营商的语音业务收费越来越低,甚至呈现逐渐免费的趋势,数据流量经营将成为运营商的主要方向。从率先开展4G建设的中移动业务结构变化便可窥视。2014年前三季度中移动语音和短信、彩信业务继续下滑,总通话分钟数比上年同期下降0.3%,短信使用量比上年同期下降20.2%;但同期移动网络数据流量比上年同期增长98.6%,几乎是去年同期的两倍,流量业务在营收中占据的比例越来越大。按照现有数据预测,到2016年,中移动语音、短信收入占比将从2011年的67%降至40%,而数据流量和数字服务的收入将增至60%,成为业务收入主体。数据流量经营对运营商的重要性越来越大,关系到运营商的生存价值甚至是生存问题。
我们认为运营商拥有任何移动互联网公司都无法比拟的海量数据,大数据金矿价值凸显,由流量经营进入大数据运营已成为大势所趋。
从目前的情况看,电信运营商与以BAT为代表的互联网企业在增值服务上并不具有竞争优势,但从后向的行业应用及大量的数据资源来看,运营商通过产业链的广泛合作仍然有着巨大的发展空间。同时,由于涉及到政策模糊、用户隐私、技术成本等因素影响,运营商大数据掘金之路目前仍然曲折。但不可否认的是,运营商拥有任何移动互联网公司都无法比拟的海量数据,大数据金矿价值凸显,由语音经营走向流量经营进而进入大数据运营已成为大势所趋,空间巨大。
大数据运营基础架构
目前,运营商在大数据经营方面尚未形成明确的盈利模式,还处于“摸着石头过河”阶段。借鉴国外运营商的运行模式,结合信令数据、DPI技术、B+O域数据整合等可洞析大数据运营可能的方向。
全球运营商已经开始为掘金大数据做准备。电信与媒体市场调研公司Informa Telecoms &; Media在2013年的调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右(我国运营商目前投入占比不足1%),成为运营商的一项战略性优势。国外运营商已经做了一些很好的尝试,美国AT&;T位置数据货币化、日本NTT Docomo创新医疗行业的社会化整合、Verizon数据仓库促进精准营销、德国电信智能网络培育新增长点、Telefónica大数据支撑用户体验优化、Vodafone动态数据仓库支持商业决策、法国电信数据分析改善服务水平、KDDI商业WiFi运营等,都是有借鉴意义的案例。
信令数据用以实现网优及获取位置信息。信令实际上就是一种用于控制的信号。语音经营时代,通话质量对运营商来说是至关重要的指标。运营商通过对信令进行监测,深层次支撑网络优化、精确故障定位。随着2G、3G、4G的逐步建设,运营商进入流量经营时代,通过信令数据可以规划基站和热点的建设,还可以对已有基础的效率和成本进行评估,用以增减基站建设以实现更高的网络效率。流量经营时代,上网流量的监测需求变得更为突出,但信令数据作为网络优化必不可缺的环节,加之通过进一步发掘信令数据所采集的位置信息,对运营商大数据运营提供了非常有意义的基础数据。基于这些数据的价值挖掘,是目前较为清晰的一个发展方向。
DPI已经在流量管理、安全和网络分析等方面成功开展,同时能够对网络数据包进行内容分析。通常的DPI解决方案能够为不同的应用程序提供深度数据包检测。DPI能够检测出数据包的内容及有效负载并且能够提取出内容级别的信息,如恶意软件、具体数据和应用程序类型。运营商均已充分认识到DPI的巨大价值,早已开始大规模招标建设、与第三方服务机构合作,4G带来的流量爆发更为DPI发挥巨大价值提供了广阔空间,因此,充分挖掘DPI的巨大潜力将给运营商带来巨大的效益。
运营商网内数据主要来源于业务平台、基础网络、支撑系统(包括O域(运营域)、B域(业务域)、M域(管理域))三大IT支撑系统。每个域由多个子系统组成,各域数据分别存放在多个生产数据库中,目前数据库的总量已达上百个,B+O域有效数据存储量占总量的80%以上。通过整合B域和O域的数据,可大幅提升信息共享能力,提高网络优化和规划建设的效率和有效性,有利于进一步的数据分析,尤其是对流量经营有着重要的意义,提升数据业务流量经营的用户行为与业务洞察能力,通过平台建设初步形成“大数据”洞察的跨域(B域/O域)分析架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22