
电信运营商大数据蓄势待发 大数据公司投资逻辑
电信运营商大数据蓄势待发
电信运营商积累了庞大的数据资源,大数据金矿价值凸显。而互联网巨头已在数据变现的道路上大踏步前进,摆在运营商面前的一条出路便是管道智能化。通过大力推进“智能管道”建设,增加附加值,大规模地发展增值服务。由于拥有大量数据资源,运营商通过产业链的广泛合作,相关产业链的公司与运营商共建平台,仍然有着巨大的发展空间。另外,产业链相关公司垂直化拓展其数据挖掘、分析及营销能力也大有可为。
大数据运营成必然选择
对于运营商来看,被以BAT为代表的互联网巨头及OTT企业“管道化”的趋势已不可避免,同时互联网巨头凭借自身庞大的数据资产已在数据变现的道路上大踏步前进,这将进一步边缘化运营商的地位。摆在运营商面前的一条出路,便是管道智能化。
随着网络建设的不断发展,运营商的语音业务收费越来越低,甚至呈现逐渐免费的趋势,数据流量经营将成为运营商的主要方向。从率先开展4G建设的中移动业务结构变化便可窥视。2014年前三季度中移动语音和短信、彩信业务继续下滑,总通话分钟数比上年同期下降0.3%,短信使用量比上年同期下降20.2%;但同期移动网络数据流量比上年同期增长98.6%,几乎是去年同期的两倍,流量业务在营收中占据的比例越来越大。按照现有数据预测,到2016年,中移动语音、短信收入占比将从2011年的67%降至40%,而数据流量和数字服务的收入将增至60%,成为业务收入主体。数据流量经营对运营商的重要性越来越大,关系到运营商的生存价值甚至是生存问题。
我们认为运营商拥有任何移动互联网公司都无法比拟的海量数据,大数据金矿价值凸显,由流量经营进入大数据运营已成为大势所趋。
从目前的情况看,电信运营商与以BAT为代表的互联网企业在增值服务上并不具有竞争优势,但从后向的行业应用及大量的数据资源来看,运营商通过产业链的广泛合作仍然有着巨大的发展空间。同时,由于涉及到政策模糊、用户隐私、技术成本等因素影响,运营商大数据掘金之路目前仍然曲折。但不可否认的是,运营商拥有任何移动互联网公司都无法比拟的海量数据,大数据金矿价值凸显,由语音经营走向流量经营进而进入大数据运营已成为大势所趋,空间巨大。
大数据运营基础架构
目前,运营商在大数据经营方面尚未形成明确的盈利模式,还处于“摸着石头过河”阶段。借鉴国外运营商的运行模式,结合信令数据、DPI技术、B+O域数据整合等可洞析大数据运营可能的方向。
全球运营商已经开始为掘金大数据做准备。电信与媒体市场调研公司Informa Telecoms &; Media在2013年的调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右(我国运营商目前投入占比不足1%),成为运营商的一项战略性优势。国外运营商已经做了一些很好的尝试,美国AT&;T位置数据货币化、日本NTT Docomo创新医疗行业的社会化整合、Verizon数据仓库促进精准营销、德国电信智能网络培育新增长点、Telefónica大数据支撑用户体验优化、Vodafone动态数据仓库支持商业决策、法国电信数据分析改善服务水平、KDDI商业WiFi运营等,都是有借鉴意义的案例。
信令数据用以实现网优及获取位置信息。信令实际上就是一种用于控制的信号。语音经营时代,通话质量对运营商来说是至关重要的指标。运营商通过对信令进行监测,深层次支撑网络优化、精确故障定位。随着2G、3G、4G的逐步建设,运营商进入流量经营时代,通过信令数据可以规划基站和热点的建设,还可以对已有基础的效率和成本进行评估,用以增减基站建设以实现更高的网络效率。流量经营时代,上网流量的监测需求变得更为突出,但信令数据作为网络优化必不可缺的环节,加之通过进一步发掘信令数据所采集的位置信息,对运营商大数据运营提供了非常有意义的基础数据。基于这些数据的价值挖掘,是目前较为清晰的一个发展方向。
DPI已经在流量管理、安全和网络分析等方面成功开展,同时能够对网络数据包进行内容分析。通常的DPI解决方案能够为不同的应用程序提供深度数据包检测。DPI能够检测出数据包的内容及有效负载并且能够提取出内容级别的信息,如恶意软件、具体数据和应用程序类型。运营商均已充分认识到DPI的巨大价值,早已开始大规模招标建设、与第三方服务机构合作,4G带来的流量爆发更为DPI发挥巨大价值提供了广阔空间,因此,充分挖掘DPI的巨大潜力将给运营商带来巨大的效益。
运营商网内数据主要来源于业务平台、基础网络、支撑系统(包括O域(运营域)、B域(业务域)、M域(管理域))三大IT支撑系统。每个域由多个子系统组成,各域数据分别存放在多个生产数据库中,目前数据库的总量已达上百个,B+O域有效数据存储量占总量的80%以上。通过整合B域和O域的数据,可大幅提升信息共享能力,提高网络优化和规划建设的效率和有效性,有利于进一步的数据分析,尤其是对流量经营有着重要的意义,提升数据业务流量经营的用户行为与业务洞察能力,通过平台建设初步形成“大数据”洞察的跨域(B域/O域)分析架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29