京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的部署实施需要结合具体的应用场景。实际上,企业大数据的存储处理可以用 “三只小猪盖房子”(分别使用稻草、木头和砖头)的故事来说明,这个故事能更形象地反映数据存储环境下与交付服务(成本)相对应的不同保护级别(完整性和可靠性)。
财务数据、对外报告和法规遵从性数据需在“砖房”(BRICKS)环境中存储处理。这些数据需要可靠的硬件基础设施,并与其原始来源保持一致。企业中多个职能部门使用产品服务定价决策、销售业绩及分析以及至关重要的员工/管理层薪酬激励机制计算等财务数据,这是很常见的情况。
精心设计的“木房”(STICK)环境可确保存储数据牢固耐用。该环境专用于应用程序,而并非针对企业级使用和跨职能部门数据共享而设计。该数据类型可专门用于数据转换,通常包括大量营销数据集市。仅数据转换、协调及沿袭等必要功能即可满足特定商业用途。与上述“砖房”相比,“木房”从本质上讲,成本更低,速度更快。
最后介绍“草房”(HAY)。“草房”实际上是指在需要使用数据的特定日期对数据进行转换、分组及汇总。其中,数据可能以原始来源的数据格式存在,几乎不需要任何数据结构。用户可任意调整数据格式。虽然 “草房”设计无法轻易复制或纵向扩展,却适用于应对非特定、非重复性商业问题。该方案对数据协调及复制的需求低。
使用“三只小猪”的类比相当直观,但具体解决方案应参考数据管控(Data Governance)方针。如能应对自如,业务部门希望快速获得低成本解决方案;而IT部门则需要依托可靠的解决方案,提供健全、可靠的服务。这也是业务及IT部门大多数讨论中的固有矛盾。
由于部署迅速、成本低且失败的代价低,“草房”解决方案备受关注。在新的经济机制下,特别是在自助式环境下用户对数据(包括大数据)价值的认可,是数据实验室和探索环境快速发展的原因。因此,业务部门选择快速、低成本的解决方案也不足为奇。
但将“草房”方案升级为“木房”或“砖房”环境时,IT部门的成本令人非常震惊。“为什么他们不能使用我们两周内设计的解决方案?”他们可以。但在 “草房”的基础上部署“砖房”甚至是“木房”方案都行不通。利用“草房”的设计方案部署“木房”及“砖房”方案,将浪费IT部门大量预算。
其主要挑战是识别数据重要性的数据管控策略和过程。在“草房”环境中设计出的“创意”方案需迁移至更稳定的环境时,参与数据管理方式(草房、木房还是砖房)决策的相关负责人需要全面了解下游数据的重要性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31