京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网贷缺依据,大数据征信如何做_数据分析师
可供银行挖掘的信用数据包括内部、外部两大部分,内部数据包括客户信用卡、存款、理财、网银、个贷、小企业贷等信息,外部数据包括专业市场数据库、社区居民数据库、各商会和产业链数据库等,以及央行征信系统信息。
目前数据的来源、精准性、应用场景等已成为商业银行发展网贷亟需面对的问题
从线下到线上的渠道转换,正在为银行信贷业务注入“互联网基因”。日前,招商银行的移动互联网贷款产品“闪电贷”已完成前期的定向邀约测试,将于近期在全国大范围推广。此外,广东已有多家商业银行已率先针对小微、个人消费贷等零售信贷领域布局网络贷款,并不断向手机等移动端拓展。
问题也随之而来:少了线下审贷环节,网贷发放的依据——大数据征信如何做?其中,数据的来源、精准性、应用场景等,均成为商业银行发展网贷亟需面对的问题。
外部数据从哪儿来?
目前,各家商业银行的征信数据来源包括外源型和内源型两部分。
多家商业银行负责人表示,外部数据主要来自央行征信系统、工商总局和专业的第三方数据机构及部分互联网企业;内部数据则包括客户在银行已有的资产、负债、交易等信息,银行会对内部数据实时动态更新,以保证其有效性。
“外部基础数据来源还是央行的征信系统。”微众银行行长曹彤表示,贷款企业同意后,会授权银行去抽取数据。据央行统计,截至2013年底,其征信系统收录自然人8.3亿,收录企业及其他组织近2000万户。在8.3亿自然人中,有财务信息的约5亿人,有贷款信用记录的约3.2亿人。
“对于在央行征信系统里没有贷款信用记录的人,银行也能够授信。”广发银行首席信贷官林亚臣表示,比如银行与商会、专业的第三方机构签订协议共享部分数据,或者用内部积累数据进行补充。
“市场上已有很多机构,专门归集企业商务行为中各个节点的数据,然后对其整理、分析,做出模型,辅助银行对授信企业做贷前决策和贷后管理。”平安银行网络金融事业部副总裁梁超杰说,有些机构专门做企业上下游交易数据,比如通过订单数据、运单数据、支付结算数据,分别判断企业的商流、物流、资金流,形成了很多模型。
此外,自央行放行民营机构涉足征信行业以来,芝麻信用、腾讯征信等8家民营机构已获批开展准备工作。1月28日,阿里巴巴蚂蚁金服旗下的芝麻信用已开始在支付宝钱包中公测。
招商银行小微企业业务室高级经理公立认为,个人征信机构牌照逐步放开是社会分工专业化的结果,商业银行今后的外部数据来源会更加丰富。“招行不排斥与其合作,但目前还没有开展。”
内部数据如何深挖?
“银行拥有海量数据,但挖掘远远不够。”公立表示,风控体系是传统商业银行经营多年积累的优势,如果对内部既有的客户信息、交易行为信息深挖,就有能力构建出一套较完整的信用评价体系。
招行的“闪电贷”首先选择了零售业务的存量客户。具体来看,对于已开通招行一卡通个人账户的存量客户,招行首先分析其存留在该行的负债、资产、资金交易等业务数据,根据信用情况确定1000元至50万元的授信额度。“下一步,招行将在此基础上进一步深入挖掘大数据的价值。”公立说。
由于发放网络贷款需依靠精准、动态的实时数据,因此,在内部评价体系的基础上,各家银行还尝试建立“全景式”的即刻数据搜索平台。
广发银行行长利明献介绍说,该行大数据零售商业智能决策平台已上线半年,可划分为3部分:该平台首先整合了银行内部数据,将客户信用卡、存款、理财、网银、个贷、小企业贷等信息进行归集;同时自建外部信息数据库,包括专业市场数据库、社区居民数据库、各商会和产业链数据库等;在两者基础上,整合央行征信系统,并与工商总局个体户等小微企业信息联网。
“由于企业运转处在动态变化中,为保证实时监测效果,平台十分注重非财务性指标的评价体系。”利明献说,非财务性指标具体包括客户的纳税、结算、水电缴费、代发工资等,这些数据更能反映企业现金流的运作情况。
场景入口将成新战场
作为众多商业银行战略创新的主要抓手,大数据征信对银行线上业务的重要性毋庸置疑。但值得注意的是,真正有效的是落在场景上的数据。此外,银行自身并不缺数据。缺少的是对数据维度和关联度的挖掘。有关专家表示,在银行授信评估中,最核心的金融智慧是通过数据和算法模型,在客户与风险中建立一个量化关系。较之宽泛数据,落在场景上的数据更加“有效果”和“有效率”。
因此,业内人士预计,场景入口将会是大数据的下一个争夺战场。通过特定场景,平台能够从企业的经营过程推测经营结果,从个人的交易过程推测资信状况。商业银行之所以搭建B2B电商平台、发力供应链金融,大多是希望获取平台企业的经营轨迹、交易数据、账户资金进出沉淀等情况,进而为企业提供交易、支付、融资等综合金融服务。
“芝麻分”是怎么算出来的?
阿里巴巴蚂蚁金服旗下的芝麻信用管理有限公司(下称“芝麻信用”),日前开始在支付宝定向公测,对用户的信用状况打出“芝麻分”,分值范围从350到950。其中,350至550属于较差,550至600属于中等,600至650属于良好,650至700属于优秀,700至950则被列入极好等级。
目前,支付宝实名用户凭借600以上的芝麻分,就可以享受“信用住”,即入住芝麻信用合作酒店可以不再交付押金。蚂蚁金服表示,目前,芝麻信用已和租车、租房、婚恋、签证等多个领域的合作伙伴谈定合作,将很快试验性地对外提供服务。
“芝麻分”是怎么算出来的?芝麻信用内部资料显示,信用评级根据身份特质、信用历史、行为偏好、履约能力、人脉关系5个维度综合计算,前4个维度权重占95%,人脉关系这一社交维度仅占5%。
从数据来源看,芝麻信用的电商数据来自阿里巴巴,互联网金融数据来自蚂蚁金服,此外,还和多方公共机构合作,同时开辟各类渠道,允许用户主动提交各类信用相关信息,涵盖了信用卡还款、网购、转账、理财、水电煤缴费、租房信息、住址搬迁历史、社交关系等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16