京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析大数据在金融行业如何变现_数据分析师培训
大数据金融进入2.0时代之后,大数据如何进行变现成为金融企业讨论的问题。在过去,金融企业采用的都是静态的数据、不活跃的数据,这样的数据变现能力很差。大数据在金融行业的应用主要集中在数据集市和数据挖掘,主要作用是生成各种各样的财务报表和管理报表,让企业管理者从不同的角度和纬度了解企业的运行情况,寻找重大决策所需要数据支持。大数据的价值应用处于被动状态,大数据变现特点不明显。
移动互联网的数据特别是手机APP的数据正在成为具有价值的资产。大数据将成为金融企业未来发展的石油,是金融企业赢得未来市场的法宝。下面我们就简单介绍一下,大数据到底能为金融行业带来哪些价值?大数据在金融行业如何进行变现。
一、帮助金融企业获客
金融行业的服务范围正在跨越地理空间的限制,客户的获取不再仅仅依赖于线下的市场活动,移动互联网获客正在成为可能;基金和证券的互联网开户已经成为事实,未来银行的在线开户也将逐步变成事实。
移动大数据由于具有定人定为的特点,金融行业完全可以利用客户装载的APP进行精准营销,快速获取客户。消费者的手机号是需要保密的,但是其手机的设备号和上面装载的APP信息却是可以进行利用的。
二、了解你的客户
未来是移动金融的天下,金融行业的APP将成为主要的客户入口。金融企业如果想了解客户喜好,了解用户的习惯,提高客户体验,提高客户的活跃度,留住更多的老客户,获得更新客户;金融企业就必须关注自身移动APP应用的运营情况,必须关注APP中的客户体验,必须了解APP中用户行为。这些也是互联网企业的核心竞争力。
金融企业可以借助于移动APP运营统计分析平台来了解移动APP的登陆情况,活跃程度,使用时间,客户使用偏好,客户喜欢的金融产品,客户经常点击的菜单,不活跃的菜单和产品等信息。金融企业可以根据用户的喜好来进行UI的设计和更改,包括布局、图表形状、颜色搭配等,提高客户体验和活跃度。大数据在用户体验上的应用已经发展一段时间,未来金融行业在用户体验上的投入将会逐步增加。
三、精准营销
在移动互联网时代,每个人使用移动设备的时间在逐渐增加,传统媒体的优势正逐步被新媒体取代,消费者更多利用手机来获取信息,多数的年轻人都在玩手游,利用平板电脑观看电影和电视剧,数字电视节目正在成为主流。由于客户行为的改变,金融行业应加大在数字媒体上的营销力度和广告投入。
大数据时代,用户使用的移动APP可以帮助金融企业了解客户的消费习惯和消费能力,找到目标客户。在确定目标客户之后,金融企业可以选择在客户经常观看的媒体或APP上来投放营销广告,另外利用DSP的数据,金融企业可以了解多少广告被客户主动点击,客户停留时间,客户购买产品的期望,客户的转化率等信息。
四、增加风险评估维度
大数据的连接、反馈和揭示可以帮助金融企业充分考虑风险场景和风险纬度,利用大数据揭示事物规律和本质的特点来帮助金融行业进行更加全面的风险管理。互联网金融企业和互联网巨头BAT进行的小额信贷就是利用大数据实施风险评估和管理。
五、挖掘客户价值
利用大数据的连接、反馈、揭示等功能,金融企业可以利用客户交易数据来分析其消费习惯和爱好,定位其金融需求;利用企业之间的交易数据可以了解各个企业的运营情况,现金流情况,主要的资金流向等信息。通过相关性分析可以为客户推荐已有的产品或单独设计产品。
在大数据金融2.0时代,拥有移动APP数据、移动APP运营统计分析平台、大数据管理平台;独立于互联网BAT巨头、具有高度商业敏感度的大数据公司,将会成为金融行业大数据变现的主要推动者,金融企业大数据战略实施的合作伙伴。任何一个金融企业如果忽视了在移动互联网和大数据两大领域的投入,未来就会在市场竞争中处于下风,有可能被残酷的市场淘汰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26