
浅析大数据在金融行业如何变现_数据分析师培训
大数据金融进入2.0时代之后,大数据如何进行变现成为金融企业讨论的问题。在过去,金融企业采用的都是静态的数据、不活跃的数据,这样的数据变现能力很差。大数据在金融行业的应用主要集中在数据集市和数据挖掘,主要作用是生成各种各样的财务报表和管理报表,让企业管理者从不同的角度和纬度了解企业的运行情况,寻找重大决策所需要数据支持。大数据的价值应用处于被动状态,大数据变现特点不明显。
移动互联网的数据特别是手机APP的数据正在成为具有价值的资产。大数据将成为金融企业未来发展的石油,是金融企业赢得未来市场的法宝。下面我们就简单介绍一下,大数据到底能为金融行业带来哪些价值?大数据在金融行业如何进行变现。
一、帮助金融企业获客
金融行业的服务范围正在跨越地理空间的限制,客户的获取不再仅仅依赖于线下的市场活动,移动互联网获客正在成为可能;基金和证券的互联网开户已经成为事实,未来银行的在线开户也将逐步变成事实。
移动大数据由于具有定人定为的特点,金融行业完全可以利用客户装载的APP进行精准营销,快速获取客户。消费者的手机号是需要保密的,但是其手机的设备号和上面装载的APP信息却是可以进行利用的。
二、了解你的客户
未来是移动金融的天下,金融行业的APP将成为主要的客户入口。金融企业如果想了解客户喜好,了解用户的习惯,提高客户体验,提高客户的活跃度,留住更多的老客户,获得更新客户;金融企业就必须关注自身移动APP应用的运营情况,必须关注APP中的客户体验,必须了解APP中用户行为。这些也是互联网企业的核心竞争力。
金融企业可以借助于移动APP运营统计分析平台来了解移动APP的登陆情况,活跃程度,使用时间,客户使用偏好,客户喜欢的金融产品,客户经常点击的菜单,不活跃的菜单和产品等信息。金融企业可以根据用户的喜好来进行UI的设计和更改,包括布局、图表形状、颜色搭配等,提高客户体验和活跃度。大数据在用户体验上的应用已经发展一段时间,未来金融行业在用户体验上的投入将会逐步增加。
三、精准营销
在移动互联网时代,每个人使用移动设备的时间在逐渐增加,传统媒体的优势正逐步被新媒体取代,消费者更多利用手机来获取信息,多数的年轻人都在玩手游,利用平板电脑观看电影和电视剧,数字电视节目正在成为主流。由于客户行为的改变,金融行业应加大在数字媒体上的营销力度和广告投入。
大数据时代,用户使用的移动APP可以帮助金融企业了解客户的消费习惯和消费能力,找到目标客户。在确定目标客户之后,金融企业可以选择在客户经常观看的媒体或APP上来投放营销广告,另外利用DSP的数据,金融企业可以了解多少广告被客户主动点击,客户停留时间,客户购买产品的期望,客户的转化率等信息。
四、增加风险评估维度
大数据的连接、反馈和揭示可以帮助金融企业充分考虑风险场景和风险纬度,利用大数据揭示事物规律和本质的特点来帮助金融行业进行更加全面的风险管理。互联网金融企业和互联网巨头BAT进行的小额信贷就是利用大数据实施风险评估和管理。
五、挖掘客户价值
利用大数据的连接、反馈、揭示等功能,金融企业可以利用客户交易数据来分析其消费习惯和爱好,定位其金融需求;利用企业之间的交易数据可以了解各个企业的运营情况,现金流情况,主要的资金流向等信息。通过相关性分析可以为客户推荐已有的产品或单独设计产品。
在大数据金融2.0时代,拥有移动APP数据、移动APP运营统计分析平台、大数据管理平台;独立于互联网BAT巨头、具有高度商业敏感度的大数据公司,将会成为金融行业大数据变现的主要推动者,金融企业大数据战略实施的合作伙伴。任何一个金融企业如果忽视了在移动互联网和大数据两大领域的投入,未来就会在市场竞争中处于下风,有可能被残酷的市场淘汰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30