
大数据颠覆传统金融_数据分析师培训
2013年是互联网金融元年,互联网技术在金融业的应用犹如在银行主导的传统金融业的死水中投入一颗石子。互联网金融未来发展的一大趋势是大数据的应用,而这也改变了人们对金融本质的传统认识。此前学界广泛认为金融的本质是中介,还有人认为金融的本质是对风险的控制与管理,然而随着互联网金融的发展,已经有人开始对金融进行重新定义,金融就是大数据。
从融资模式看,现代金融有两种模式,一种是银行模式:存款、贷款、支付,一种是资本市场模式。资本市场模式就是直接融资,通过交易所进行股票交易。互联网金融既不走银行模式,也不走资本市场交易所模式,它有可能是所有的存款人和所有的借款人,通过互联网平台直接交易。未来通过互联网走直接金融的模式,不需要资本市场,也不需要银行。
从支付模式看,有移动支付和第三方支付。第三方支付在中国的典型是支付宝。我们现在的支付模式是银行支付模式:个人在商业银行开户,商业银行在中央银行开户,解决各家银行之间的跨行清算,而支付宝颠覆了这个模式。现在已经有一些公司给员工发工资直接打到支付宝,员工用支付宝支付,然后转账到别人的支付宝,这样的话,在银行体系之外构成了支付体系。微信5.0 支付也是这个模式。第三方支付未来完全有可能在银行支付系统之外创造一个新的支付系统。银行卡支付被手机支付替代;POS机刷卡被扫二维码替代。
所谓对传统金融的彻底颠覆,一个很重要的表现形式是大数据的征信和网络贷款:根据企业的行为数据计算出企业可能违约的概率,在这个基础上进行贷款(B2B是典型)。当前典型的是阿里小贷等。未来大数据的保险也是这样的:根据行为的数据进行保险差别的定价。比如未来的车险将根据个人生活、工作、习惯所有大数据的基础,给出事故发生的概率,然后给出保险的费率。这种模式完全颠覆了现在保险费率的模式。P2P网络贷款,也是互联网金融的模式。P2P网络贷款是债权,众筹融资就是解决股权问题。如通过众筹模式解决小额风险投资问题,美国已经规定这种模式是合法的。大数据在证券投资中的应用也将非常广泛。互联网金融,尤其是搜索引擎、云计算使人们收集了大量的数据,这些数据在证券投资当中将发挥很大的作 用,而且现在它对股价的预期非常有用。
从形式上讲,互联网对传统金融的彻底颠覆表现形式是大数据的应用,本质上是根据科斯定理,金融机构作为中介的价值或许会消失。假设整个金融市场互联网化,那么现在的银行机构、证券机构、保险机构的金融中介作用将会弱化甚至消失,取而代之的可能是基于大数据的直接金融交易。
假设整个金融市场互联网化,包括支付清算体系、金融产品金融工具、风险评估与定价、期限匹配数量匹配都互联网化,这样交易成本将极低,基于互联网技术的金融市场效率就非常高了。现在我们大量的金融市场的交易存在信息不对称,大量信息不对称引起交易成本非常高,也使得金融成为专业性很强的精英行业。然而未来金融神秘的面纱或许会揭开,普通百姓也可以很轻松进行现在看来很复杂的金融交易,就像现在下载一个APP应用一样下载使用金融产品。金融网点的消失可以使金融系统人力资本、营运资本大大降低。假设互联网支持了金融市场,完全互联网化的话,完全是供求方和需求方直接交易,交易成本会减少很多,这就是科斯定理。
互联网金融在2013年发轫,对金融的影响是颠覆性的,它将改变人们对金融传统的部分认识与观念。但是金融在未来将回归它的核心本质。未来变的不是金融的核心定义,而是现在的股权、债权、保险、信托等这些金融产品的契约形式,变的是金融监管的与时俱进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29