
大数据会否使计划经济最终掌控世界
昨天可穿戴设备之父,大数据大师阿莱克斯·彭特兰来百家《BIG TALK》与中国科技界对话,在现场,我提向彭特兰提了一个已经思索许久的问题,请他回答。
问题大概是这样的:作为一种人类管理社会经济的一种实验,计划经济可说在之前是失败的,事实证明,国家通过计划指令的方式进行资源配置不如通过市场实现资源配置效率更高。但是,随着大数据技术的进步,国家对经济数据的掌控能力也随之增强,这会不会导致未来有一天,计划经济最终掌控世界?
可能因为翻译的问题,也可能是因为问题本身比较复杂,彭特兰并没有给出一个思路清晰的答案,我把这个同时转发到网上,也引发激烈争议,有的朋友强烈否定,有的朋友则有所反思。
如果排除意识形态方面的门户之见,我认为计划经济和市场经济各自优劣性以及在未来人类社会中各自所处的地位,市场是否永远是资源配置的最佳手段和主导性手段,这些问题,都是很值得讨论的。
人类自理性产生以来,对世界的掌控欲(政府世界)也随之而生,由此而言,掌控经济也是人类的天性所在,这也是乌托邦时期以及之后李斯特、马克思等经济学大师探索“计划经济”的由来。而后来在苏联和中国等社会主义国家的试验又证明,计划经济至少在目前是失败的。
计划经济试验在苏中的失败有各种原因,但归根结底还是因为它不如市场那样配置资源更有效率,无法精准的解决生产什么、怎样生产和为谁生产这三个主要问题。国家无法确切的知道消费者到底需要什么,自然在进行经济计划的时候会错漏百出。
但如果人类做计划的能力得到大幅度提高,会不会在某一天使计划的效率终于超过市场呢?在没有互联网之前,学界总认为在人类可预见的将来这是不可能的。但互联网和信息革命已经颠覆了太多东西,至少在收集信息数据、互联信息数据、储存信息数据、处理信息数据方面,其进步是所有人都不曾想到的,而这一不曾预想到的进步的结果之一,就是人类计划能力的提高,对世界的掌控力更强了。
市场是人类经济社会运行的原始动力,但计划因素的持续增强却也是事实,除了计划经济试验,企业的出现以及其规模的越来越大,也是计划因素增强的结果。因为在企业内部,本身就是“计划经济”的。
既然市场是在价格机制的支配下自发运行,既然无形的手无处不在,为什么还会有企业?上世纪30年代科斯就因为研究这一问题拿了诺贝尔经济学奖,他研究出的答案是,市场的运行时有成本的(交易成本),如果组织企业能够节约交易成本,企业的存在就有意义。
按这一逻辑,企业越大自然是节约的交易成本越高,但为什么在经济社会的早期,基本上没有什么大企业呢?因为技术达不到,企业的组织成本一旦高于交易成本,则企业存在无意义。随着技术的提高,企业的组织成本越来越低,企业的规模也越来越大,这就有了今天的跨国公司。企业规模的边界由技术决定,跨国公司的组成成本一旦高于交易成本,它就再也没法有效扩张了。
国家的道理也一样,黄仁宇当年研究明史,讲中华帝国为什么会一直运行低效,就是因为缺乏有效的“数目字管理”。所有帝国都一样,帝国的管理能力能够达到的极限,就是帝国崩溃前的边界。
但技术的进步,尤其是大数据的进步,却有可能把人类能够进行计划的边界大大扩张,扩张到足有一个国家那么大。而此处之大,并不只是指宏观上的规模大,也指在微观上的细致深入,尤其是后者,在之前,微观资源无法有效分配,是计划经济里最受批评的要点。因为国家所有资源都由政府决定,私人不掌握生产资料,于是乎国家可以罔顾私人的实际需要而进行经济计划。奥地利经济学派的路德维希·冯·米塞斯主张社会主义在经济上必然会失败,因为经济计算问题注定了政府永远无法正确的计算复杂万分的经济体系。只要缺乏了价格机制,社会主义政府根本无从得知市场需求的情报,而随之而来的必然是计划的失败和经济的彻底崩溃。
但现在,电脑、手机、可穿戴设备,再加上无线互联网,人类的需求从来没有如此容易地被汇集、处理,人类的数据处理能力从来没有的强大--未来会更强大,那么,未来政府是否会有可能更正确的“计算复杂万分的经济体系”呢?
计划经济管理的国家,说简单了,就是一个采取某种制度管理的超级公司,这个公司可能是集权的,也可能是民主的。完美的计划经济可确保所有资源都能持续运用,不会受到经济周期的波动所影响,如泡沫经济、停产以至失业问题都不会发生,而通货膨胀问题不会存在,而长期性的基建投资,更不会受市场因素而停止。正因为这些完美的预期,几百年间才会有无数人去憧憬试验计划经济。大数据技术的进步,会复活这些憧憬吗?
最后,本文无意进行意识形态方面的争论,只是从技术进步层面提出一些学术假设,而这些假设也不代表作者对计划经济或者市场经济的立场与看法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18