
"工业4.0"重新"涂装"船舶工业 国产智能船驶向"大数据之海"
两艘总吨位逾20万吨的远洋船将在年内接受“手术”,获得思考、学习和自我诊断能力,并能告知船东“怎么航行最赚钱”。它将是中国制造的第一批智能化船舶。
全球最大造船企业——中国船舶工业集团已与航运企业达成一致,不仅为后者造船,还将处理智能船产生的大量航运数据,这让船厂的领地从制造拓展到全寿命周期服务,由此形成全新的价值创造模式。
物联网、大数据、智能化、服务化——智能船鲜明的“工业4.0”色彩正在重新“涂装”船舶工业。中船集团副总裁南大庆说,“工业4.0”是我国船舶产业尽快赶上世界先进水平“千载难逢的机会”。中央“千人计划”特聘专家、美国辛辛那提大学教授、智能制造的领军人物李杰表示,船舶业的“工业4.0”探索对提升“中国制造”水平有着极大的借鉴意义。
会思考的聪明船
为了开发智能船,中船集团调动了大量资源,包括中国船舶工业系统工程研究院、上海船舶研究设计院、沪东中华船厂、沪东重机、黄埔文冲船厂等。第一代智能船将拥有300多个传感器,可以连续感知船舶运行与海况环境,每天产生数据超过10G。系统工程院院长张宏军透露,由此形成的“思考能力”将让机器分担船员50%的工作。
让船“会思考”,对航运保障意义重大。它能随时监控船员操作,持续评估零件状态。张宏军说,大部分船舶事故来自误操作,智能船有望将事故率降低70%;假使能预知零件故障,就能提前订好备件,送往船即将停靠的码头,这可将船舶可用时间增加10%。除了“自省”,智能船还会“学习”。整个项目将在岸上建立数据中心,把天气、油价、运价等动态信息导入经济模型;远程获取这些知识后,智能船就能选择最合理的航速、航线。
有些意外的是,智能船并不贵。在其300多个传感器中,新增硬件不多,关键是依靠软件建一个“大数据池”,将大量数据汇总关联,相当于在虚拟空间里重建了船与海。
张宏军说,过去船舶拥有大量自动化设备,但就像一个个信息孤岛,产生的数据虽多,但零散、静态,无法提炼出整条船和航路的最优方案:“我们理解的‘工业4.0’,就是实现装备与信息的深度耦合。”
中船集团已计划新造一艘功能更完备的智能船,预计两三年后下水,新船设计已在上海启动。虽然国外已在开发“无人船”,但离不开人的遥控;相比之下,能“独立思考”的国产智能船可以说比国外“无人船”领先一代。
重构的生产关系
智能船第一次有机会打通船舶业的整条产业链——研发、制造、运营,从而创造出新的价值。李杰说,借助大数据发现并弥补需求的缺口,将制造业向服务拓展,这是典型的“工业4.0”。
中国远洋(运输)集团、招商局能源运输股份有限公司等航运巨头已加入中船集团的“工业4.0”联盟。中远集团战略发展部负责人高勇军说,航运业面临激烈竞争,必须提高管理精细度,对市场走向、投资回报、船队运营等给出精确解答。“许多问题过去只能凭感觉,‘该买几条船’这类事关百亿元级的投资也只好把握个大趋势。大数据也许能使这些问题迎刃而解。”
数据最主要的来源是船,最好的解读者则是船厂和航运公司,但过去一旦交船,双方就不再有什么往来。有了智能船的“粘合”,中船、中远将围绕数据开展合作,对接造船和驾船的特长。高勇军认为,这是“工业4.0”时代的共生关系。
共生不仅是双赢,大数据还能从源头上支撑船舶产业的创新——航运公司最需要什么船和发动机,设计方都可以在这个数据服务生态圈里获取养分,从而形成一个完整的创新闭环。
无论是制造方还是运营方,都倾向于把智能船引领的变革更多地看成一次“生产关系重构”——各方必须对现有价值体系进行调整,比如船厂怎么为数据服务定价,航运公司又该如何与第三方共享关键商业数据。
为中国制造探路
开发制造一艘远洋船,涉及的技术和部件覆盖了制造业85%的门类。
而且在中国,造船业是感受全球化竞争最充分的行业,它的“工业4.0”尝试其实是在为整个制造业转型升级探路。
中国制造业的装备智能化程度、信息服务业配套都比较弱,发展“工业4.0”,不应跟着领先的德国、美国亦步亦趋。李杰认为,“中国制造”的优势是贴近市场,拥有无可比拟的用户量。因此,用好用户数据,才能走出有中国特色的“工业4.0”之路。在他看来,中船、中远等联手探索,已形成了独特的价值视角,这些经验加上逐渐完善大数据处理技术,可以很方便地向高铁、发电、航空等制造业复制。
中船、中远等都认为现在到了发展“工业4.0”的时候,大家已有共识:大数据已经可以带来利润;反过来,如果对产业趋势“看不见、瞧不起、看不懂”,将来就会“来不及、活不了”。
最近几年,船舶和航运市场迅速转冷,压力之下,大家都意识到必须摆脱粗放的发展模式,创造新的价值。高勇军说,中国拥有大量低成本的技术人才,华为曾借此轻松打败了通信业的国外对手,而在“工业4.0”领域,这一幕应该有机会重演。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29