京公网安备 11010802034615号
经营许可证编号:京B2-20210330
"工业4.0"重新"涂装"船舶工业 国产智能船驶向"大数据之海"
两艘总吨位逾20万吨的远洋船将在年内接受“手术”,获得思考、学习和自我诊断能力,并能告知船东“怎么航行最赚钱”。它将是中国制造的第一批智能化船舶。
全球最大造船企业——中国船舶工业集团已与航运企业达成一致,不仅为后者造船,还将处理智能船产生的大量航运数据,这让船厂的领地从制造拓展到全寿命周期服务,由此形成全新的价值创造模式。
物联网、大数据、智能化、服务化——智能船鲜明的“工业4.0”色彩正在重新“涂装”船舶工业。中船集团副总裁南大庆说,“工业4.0”是我国船舶产业尽快赶上世界先进水平“千载难逢的机会”。中央“千人计划”特聘专家、美国辛辛那提大学教授、智能制造的领军人物李杰表示,船舶业的“工业4.0”探索对提升“中国制造”水平有着极大的借鉴意义。
会思考的聪明船
为了开发智能船,中船集团调动了大量资源,包括中国船舶工业系统工程研究院、上海船舶研究设计院、沪东中华船厂、沪东重机、黄埔文冲船厂等。第一代智能船将拥有300多个传感器,可以连续感知船舶运行与海况环境,每天产生数据超过10G。系统工程院院长张宏军透露,由此形成的“思考能力”将让机器分担船员50%的工作。
让船“会思考”,对航运保障意义重大。它能随时监控船员操作,持续评估零件状态。张宏军说,大部分船舶事故来自误操作,智能船有望将事故率降低70%;假使能预知零件故障,就能提前订好备件,送往船即将停靠的码头,这可将船舶可用时间增加10%。除了“自省”,智能船还会“学习”。整个项目将在岸上建立数据中心,把天气、油价、运价等动态信息导入经济模型;远程获取这些知识后,智能船就能选择最合理的航速、航线。
有些意外的是,智能船并不贵。在其300多个传感器中,新增硬件不多,关键是依靠软件建一个“大数据池”,将大量数据汇总关联,相当于在虚拟空间里重建了船与海。
张宏军说,过去船舶拥有大量自动化设备,但就像一个个信息孤岛,产生的数据虽多,但零散、静态,无法提炼出整条船和航路的最优方案:“我们理解的‘工业4.0’,就是实现装备与信息的深度耦合。”
中船集团已计划新造一艘功能更完备的智能船,预计两三年后下水,新船设计已在上海启动。虽然国外已在开发“无人船”,但离不开人的遥控;相比之下,能“独立思考”的国产智能船可以说比国外“无人船”领先一代。
重构的生产关系
智能船第一次有机会打通船舶业的整条产业链——研发、制造、运营,从而创造出新的价值。李杰说,借助大数据发现并弥补需求的缺口,将制造业向服务拓展,这是典型的“工业4.0”。
中国远洋(运输)集团、招商局能源运输股份有限公司等航运巨头已加入中船集团的“工业4.0”联盟。中远集团战略发展部负责人高勇军说,航运业面临激烈竞争,必须提高管理精细度,对市场走向、投资回报、船队运营等给出精确解答。“许多问题过去只能凭感觉,‘该买几条船’这类事关百亿元级的投资也只好把握个大趋势。大数据也许能使这些问题迎刃而解。”
数据最主要的来源是船,最好的解读者则是船厂和航运公司,但过去一旦交船,双方就不再有什么往来。有了智能船的“粘合”,中船、中远将围绕数据开展合作,对接造船和驾船的特长。高勇军认为,这是“工业4.0”时代的共生关系。
共生不仅是双赢,大数据还能从源头上支撑船舶产业的创新——航运公司最需要什么船和发动机,设计方都可以在这个数据服务生态圈里获取养分,从而形成一个完整的创新闭环。
无论是制造方还是运营方,都倾向于把智能船引领的变革更多地看成一次“生产关系重构”——各方必须对现有价值体系进行调整,比如船厂怎么为数据服务定价,航运公司又该如何与第三方共享关键商业数据。
为中国制造探路
开发制造一艘远洋船,涉及的技术和部件覆盖了制造业85%的门类。
而且在中国,造船业是感受全球化竞争最充分的行业,它的“工业4.0”尝试其实是在为整个制造业转型升级探路。
中国制造业的装备智能化程度、信息服务业配套都比较弱,发展“工业4.0”,不应跟着领先的德国、美国亦步亦趋。李杰认为,“中国制造”的优势是贴近市场,拥有无可比拟的用户量。因此,用好用户数据,才能走出有中国特色的“工业4.0”之路。在他看来,中船、中远等联手探索,已形成了独特的价值视角,这些经验加上逐渐完善大数据处理技术,可以很方便地向高铁、发电、航空等制造业复制。
中船、中远等都认为现在到了发展“工业4.0”的时候,大家已有共识:大数据已经可以带来利润;反过来,如果对产业趋势“看不见、瞧不起、看不懂”,将来就会“来不及、活不了”。
最近几年,船舶和航运市场迅速转冷,压力之下,大家都意识到必须摆脱粗放的发展模式,创造新的价值。高勇军说,中国拥有大量低成本的技术人才,华为曾借此轻松打败了通信业的国外对手,而在“工业4.0”领域,这一幕应该有机会重演。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08