京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何治理骚扰电话_数据分析师培训
您一天会接多少个骚扰电话?普通人一般一天能接到一到两个骚扰电话,比如半夜响一声就挂了的吸费电话。大早上被叫醒的卖保险、卖基金、卖房的各种推销电话。还有淘宝买东西,给了差评,卖家利用报复心理打电话,1个小时可以拨打几十个骚扰电话,有人一天之内接过1千多个骚扰电话,各种骚扰电话不分时间地点场合,就像灾年虫害一样,从普通人到国家领导人无一幸免。
来看一组数据,据某权威机构《2014年骚扰电话年度报告》显示,2014年全国骚扰电话总数达270亿通。就骚扰电话类型来看,“响一声”电话以50%的比例位居骚扰电话数量的首位,其次为广告推销、诈骗电话、房产中介和保险理财。这些骚扰电话的源头,是愈演愈烈的个人信息泄露。
被电话骚扰 大数据罪责难逃
大数据是个炒得很热的概念,物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。大数据这座“金矿”在改善人们的生活上立下了汗马功劳,但大数据需要采集大量的个人信息,其中就会涉及许多个人隐私。
除了办理信用卡,网上租赁房屋,网上购物,游戏注册认证之外,随着大数据的广泛应用,像手机打车软件、订餐软件、微信、各种热门app等,让我们享受便利的同时,不可避免得需要读取我们的地理位置和通讯录信息等。数据的价值在于将正确的信息在正确的时间交付到正确的人手中,否则,那就是棱镜的另一面。
关于个人信息及敏感隐私数据泄露事件是层出不穷,“棱镜计划”、“支付宝安全门事件”、“12306用户数据泄露”等一系列事件为人们敲响了大数据时代个人信息安全的警钟。引发的不仅是铺天盖地的广告推销,还给不法分子可乘之机,利用个人信息进行各种私人调查、实施非法商业竞争、实施刑事犯罪、进行身份盗窃等。拿最典型的骚扰电话来说,许多骚扰行为是无孔不入,甚至出现了伪基站,他们模仿中国移动的信号,达到盈利的目的。
大数据如何泄露个人隐私?
毋庸置疑,大数据分析是商业智能的演进,相比于传统的数据,具有数据量大、查询分析复杂、高效等特点。比如,沃尔玛每隔一小时处理超过100万客户的交易,录入量数据库估计超过2.5 PB相当于美国国会图书馆的书籍的167倍 。FACEBOOK从它的用户群获得并处理400亿张照片。解码最原始的人类基因组花费10年时间处理,如今可以在一个星期内实现。
因为个人信息数据的多种多样,大数据还会覆盖如智能终端、智能手环、物联网、位置导航等个人端产生的海量信息,这些开放、分散的、海量的数据实时接入网络,管理员很难像传统互联网管理一样逐一对其编辑和管理,进行实时跟踪保护。
同样,大数据收集缺乏针对性,容易导致广泛、不合理、过度收集个人信息数据,常常通过覆盖面很广的个人信息收集和分析后才能找出其中有价值的信息,在此过程中很难避免不触碰到一些个人隐私数据。没有价值的信息又会丢弃,这些被丢弃的信息里又难免有个人隐私数据等。
怎样治理电话骚扰?
当然,建立健全相关法律法规是第一位的。目前,世界上已有50多个国家和地区制定了保护个人信息的相关法律,我国在大数据个人信息安全方面缺乏权威化的法律规制,缺少统一监管和行业自律,我国应制定统一的个人信息保护法,对公民个人信息的采集、使用和保密等问题作出详细规定。实际上,这个工作很早就已经开始,但个人信息保护法至今还没有出台,原因在于查处难、取证难、维权难。
随着大数据的日益蓬勃发展,在可以预见的将来,个人隐私保护将仍是要解决的重要课题。如果能够将保护个人隐私信息作为大数据技术突飞猛进的另一个考量,那么相关筛选和屏蔽个人隐私信息的技术也不是难事。归根结底,没有整治的军队必然是一团散沙,只有下定决心改变,才能看到曙光。同时需要提升用户的安全保护意识,群策群力,在大数据上做到双赢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15