
国内APP排名伤不起 大数据多为忽悠_数据分析师培训
随着移动互联网的发展,智能手机与APP为人们生产生活带来了极大改变。根据有关数据显示,2014年,我国各类APP超过了70万,仅教育类APP就超过了7万个。
不过,伴随着移动互联网人口红利逐步消失,新手玩家及普通玩家比例在逐步减少,用户对于APP选择将越来越苛刻,部分用户体验较差,运营不佳的APP将被迅速淘汰。
那么,各类APP开发者或者运营者包括BAT第三方应用平台在利益驱使下,不断出炉各种APP排名榜。而这些排名也遭遇多方面的质疑。
近日,全球领先的市场研究集团益普索(Ipsos)资深研究总监,电信与大数据研究专家张宗华在西班牙MWC2015接受《通信生活报》(微信:maoqiying2008)采访时表示,目前很多公司声称拥有大数据,并且定期发布大数据分析结果,甚至高调推出APP排行榜。但细究其数据来源,不难发现,“相对于基础运营商(中国移动、中国电信、中国联通)拥有的全客户、全行为数据,这些所谓大数据仍就只是抽样数据,只不过样本量更大而已。在数据的多样性、更新的速度以及真实性上都达不到大数据的标准。”
张宗华透露,益普索目前与国内三大基础电信运营商以及华为等合作,将在今年5月份推出最为权威的APP报告、App排行榜,并且出炉“App潜力指数”。
张宗华认为,该报告的影响可能有三个:第一、对用户来说,可以免遭垃圾推送之苦。譬如,基础运营商掌握了用户基本的消费行为,就不会随意群发垃圾短信,APP体验一定会越来越好;第二、对开发者而言,要求比较严苛,开发出的App真正有人使用,不太容易说靠着一些公关活动或短期的营销。因为App推广方面,第一步骤肯定是砸钱,希望越多人来装越好,但数据出来之后,就会公开透明;第三、VC不会去乱烧钱,能够精准掌握APP潜在价值。
张宗华还发表如下观点:
1、现在,几乎所有创业人都想弄个App,感觉其门槛比较低。但是App有没有成功或有多少用户在使用,在市场上没有一个有公信力数据。益普索有一个突破,就是利用益普索“推动+互动+体验=潜力”这一App潜力评估模型,推出不同品类中APP潜力排名,以及排名背后的推动因素。不管是App公司、投资者、广告主,可以看到这个App是否值得投资;
2、真正大数据,具有Volume(数量)、Variety(多样)、Velocity(速度)和Veracity(真实)特性,除了上述4V之外,还该具有第五个V,也就是Value(价值),没有价值的大数据是不值得收集和分析。目前大数据分析多是由IT人员主导的,里面有过多的工具性和技术性。然而,再好的工具不能解决人们的问题依旧是没用的工具。在大数据研究的领域,益普索将加入其多年的消费者心理和行为研究的经验,找到确实能解决企业和用户问题的方向,为大数据添加更多的目的性和人性化。
3、中国真正有资格谈大数据是基础运营商,如果中国三大运营商把数据拿出来,就是一个全量数据,而且没有作假的可能性。运营商记录数据是用户一天使用的行为,用户有没有使用一个App,使用App多久,使用APP干什么,数据记录清清楚楚;现在基础运营商都想发展自己的App(注:中国电信流量宝、中国联通沃理财以及中国移动和教育),因为语音通讯时代为主导世界已过去了,现在是移动互联时代, 不能在这个时代还让用户打热线去营业厅,服务手段最简单就是做App,所以他们不断开发各种App,让用户能够在移动互联网上得到各种服务。
4、360手机助手、百度移动分发以及腾讯应用宝会有一个下载市场。现在有很多刷榜公司,几十部手机、百部手机在那边下载,甚至可能有一些比较更恶劣做法,就是App甚至可以交给他们一些钱,把分数做上去。诸多APP排行榜在国内缺少公信力:第一、App的拥有者本身刷榜行为;第二、发布榜单本身可能有一些类似百度的竞价排名模式。
5、HTML5是基于浏览器开发出来一些工具,用浏览器肯定没有用App方便。3-5年内HTML5要取代App是不太可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01