京公网安备 11010802034615号
经营许可证编号:京B2-20210330
国内APP排名伤不起 大数据多为忽悠_数据分析师培训
随着移动互联网的发展,智能手机与APP为人们生产生活带来了极大改变。根据有关数据显示,2014年,我国各类APP超过了70万,仅教育类APP就超过了7万个。
不过,伴随着移动互联网人口红利逐步消失,新手玩家及普通玩家比例在逐步减少,用户对于APP选择将越来越苛刻,部分用户体验较差,运营不佳的APP将被迅速淘汰。
那么,各类APP开发者或者运营者包括BAT第三方应用平台在利益驱使下,不断出炉各种APP排名榜。而这些排名也遭遇多方面的质疑。
近日,全球领先的市场研究集团益普索(Ipsos)资深研究总监,电信与大数据研究专家张宗华在西班牙MWC2015接受《通信生活报》(微信:maoqiying2008)采访时表示,目前很多公司声称拥有大数据,并且定期发布大数据分析结果,甚至高调推出APP排行榜。但细究其数据来源,不难发现,“相对于基础运营商(中国移动、中国电信、中国联通)拥有的全客户、全行为数据,这些所谓大数据仍就只是抽样数据,只不过样本量更大而已。在数据的多样性、更新的速度以及真实性上都达不到大数据的标准。”
张宗华透露,益普索目前与国内三大基础电信运营商以及华为等合作,将在今年5月份推出最为权威的APP报告、App排行榜,并且出炉“App潜力指数”。
张宗华认为,该报告的影响可能有三个:第一、对用户来说,可以免遭垃圾推送之苦。譬如,基础运营商掌握了用户基本的消费行为,就不会随意群发垃圾短信,APP体验一定会越来越好;第二、对开发者而言,要求比较严苛,开发出的App真正有人使用,不太容易说靠着一些公关活动或短期的营销。因为App推广方面,第一步骤肯定是砸钱,希望越多人来装越好,但数据出来之后,就会公开透明;第三、VC不会去乱烧钱,能够精准掌握APP潜在价值。
张宗华还发表如下观点:
1、现在,几乎所有创业人都想弄个App,感觉其门槛比较低。但是App有没有成功或有多少用户在使用,在市场上没有一个有公信力数据。益普索有一个突破,就是利用益普索“推动+互动+体验=潜力”这一App潜力评估模型,推出不同品类中APP潜力排名,以及排名背后的推动因素。不管是App公司、投资者、广告主,可以看到这个App是否值得投资;
2、真正大数据,具有Volume(数量)、Variety(多样)、Velocity(速度)和Veracity(真实)特性,除了上述4V之外,还该具有第五个V,也就是Value(价值),没有价值的大数据是不值得收集和分析。目前大数据分析多是由IT人员主导的,里面有过多的工具性和技术性。然而,再好的工具不能解决人们的问题依旧是没用的工具。在大数据研究的领域,益普索将加入其多年的消费者心理和行为研究的经验,找到确实能解决企业和用户问题的方向,为大数据添加更多的目的性和人性化。
3、中国真正有资格谈大数据是基础运营商,如果中国三大运营商把数据拿出来,就是一个全量数据,而且没有作假的可能性。运营商记录数据是用户一天使用的行为,用户有没有使用一个App,使用App多久,使用APP干什么,数据记录清清楚楚;现在基础运营商都想发展自己的App(注:中国电信流量宝、中国联通沃理财以及中国移动和教育),因为语音通讯时代为主导世界已过去了,现在是移动互联时代, 不能在这个时代还让用户打热线去营业厅,服务手段最简单就是做App,所以他们不断开发各种App,让用户能够在移动互联网上得到各种服务。
4、360手机助手、百度移动分发以及腾讯应用宝会有一个下载市场。现在有很多刷榜公司,几十部手机、百部手机在那边下载,甚至可能有一些比较更恶劣做法,就是App甚至可以交给他们一些钱,把分数做上去。诸多APP排行榜在国内缺少公信力:第一、App的拥有者本身刷榜行为;第二、发布榜单本身可能有一些类似百度的竞价排名模式。
5、HTML5是基于浏览器开发出来一些工具,用浏览器肯定没有用App方便。3-5年内HTML5要取代App是不太可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22