
一、统计学基础部分
1、《统计学》 David Freedman等著,魏宗舒,施锡铨等译 中国统计出版社
据说是统计思想讲得最好的一本书,读了部分章节,受益很多。整本书几乎没有公式,但是讲到了统计思想的精髓。
2、《Mind on statistics(英文版)》 机械工业出版社
只需要高中的数学水平,统计的扫盲书。有一句话影响很深:Mathematics as to statistics is something
like hammer, nails, wood as to a house, it\’s just the material and
tools but not the house itself。
3、《Mathematical Statistics and Data Analysis(英文版.第二版)》 机械工业出版社
看了就发现和国内的数理统计树有明显的不同。这本书理念很好,讲了很多新的东西,把很热门的Bootstrap方法和传统统计在一起讲了。Amazon上有书评。
4、《Business Statistics a decision making approach(影印版)》 中国统计出版社
在实务中很实用的东西,虽然往往为数理统计的老师所不屑
5、《Understanding Statistics in the behavioral science(影印版)》 中国统计出版社
和上面那本是一个系列的。老外的书都挺有意思的
6、《探索性数据分析》中国统计出版社 和第一本是一个系列的。大家好好看看陈希儒老先生做的序,可以说是对中国数理统计的一种反思。
二、回归部分
1、《应用线性回归》 中国统计出版社
还是著名的蓝皮书系列,有一定的深度,道理讲得挺透的。看看里面对于偏回归系数的说明,绝对是大开眼界啊!非常精彩的书
2、《Regression Analysis by example (3rd Ed影印版)》
这是偶第一本从头到底读完的原版统计书,太好看了。那张虚拟变量写得比小说都吸引人。没什么推导,甚至说“假定你有统计软件可以算出结果”,主要就是将分
析,怎么看图,怎么看结果。看完才觉得回归真得很好玩
3、《Logistics回归模型——方法与应用》 王济川 郭志刚 高等教育出版社 不多的国内的经典统计教材。两位都是社会学出身,不重推导重应用。每章都有详细的Sas和SPSS程序和输出的分析。两位估计洋墨水喝得比较多,中文写的书,但是明显老外写书的风格
三、多元
1、《应用多元分析(第二版)》 王学民 上海财经大学出版社
现在好像就是用的这本书,但是请注意,这本书的亮点不是推导,而是后面和SAS结合的部分,以及其中的一些想法(比如P99 n对假设检验的影响,绝对是统计的感觉,不是推推公式就能感觉到的)。这是一本国内很好的多元统计教材。
2、《Analyzing Multivariate Data(英文版)》 Lattin等著 机械工业出版社 这本书有很多直观的感觉和解释,非常有意思。对数学要求不高,证明也不够好,但的确是“统计书”,不是数学书。
3、《Applied Multivariate Statistical Analysis (5th Ed影印版)》 Johnson & Wichem 著 中国统计出版社
个人认为是国内能买到的最好的多元统计书了。Amazon 上有人评论,评价很高的。不过据王学民老师说,这本书的证明还是有不太清楚,老外实务可以,证明实在不咋的,呵呵
四、时间序列
1、《商务和经济预测中的时间序列模型》 弗朗西斯著
Amazon 上五星推荐的书,讲了很多很新的东西也非常实用。我看完才知道,原来时间序列不知有AR(1) MA(1)啊,哈
2、《Forecasting and Time Series an applied approach(third edition)》 Bowerman & Connell 著
本书的主讲Box-Jenkins(ARIMA)方法,附上了SAS和Minitab程序
五、抽样
1、《抽样技术》 科克伦著 张尧庭译
绝对是该领域最权威,最经典的书了。王学民老师说:这本书不是那么好懂的,数学系的人,就算看得懂每个公式,未必能懂它的意思(不是数学系的人,还是别看了吧)。
2、《Sampling: Design and Analysis(影印版)》 Lohr著 中国统计出版社
讲了很多很新的方法,无应答,非抽样误差,再抽样,都有讨论。也很不好懂,当时偶是和《Advance Microeconomic
Theory》一起看的,后者被许多人认为是梦魇,但是和前者一比,好懂多了。主要还是理念上的差距。我们的统计思想和数据感觉有待加强啊
六、软件及其他
1、《SAS软件与应用统计分析》 王吉利 张尧庭 主编
好书啊!!!!
2、《SAS V8基础教程》 汪嘉冈编 中国统计出版社
主要讲编程,没怎么讲统计。如果想加强SAS编程可以考虑。
3、《SPSS11统计分析教程(基础篇)(高级篇)》 张文彤 北京希望出版社
当初第一次看这本书,发现怎么几乎都看不懂,尤其是高级篇,现在终于搞清楚了:)
4、《金融市场的统计分析》 张尧庭著 广西师范大学出版社
张老师到底是大家,薄薄的一本书,言简意言简意赅,把主要的金融模型都讲清楚了。看完会发现,分析金融单单数学模型还是纸上谈兵,必须加上统计模型和统计方法才能真正应用。本书用的多元统计(代数知识)比较深
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15