京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、统计学基础部分
1、《统计学》 David Freedman等著,魏宗舒,施锡铨等译 中国统计出版社
据说是统计思想讲得最好的一本书,读了部分章节,受益很多。整本书几乎没有公式,但是讲到了统计思想的精髓。
2、《Mind on statistics(英文版)》 机械工业出版社
只需要高中的数学水平,统计的扫盲书。有一句话影响很深:Mathematics as to statistics is something
like hammer, nails, wood as to a house, it\’s just the material and
tools but not the house itself。
3、《Mathematical Statistics and Data Analysis(英文版.第二版)》 机械工业出版社
看了就发现和国内的数理统计树有明显的不同。这本书理念很好,讲了很多新的东西,把很热门的Bootstrap方法和传统统计在一起讲了。Amazon上有书评。
4、《Business Statistics a decision making approach(影印版)》 中国统计出版社
在实务中很实用的东西,虽然往往为数理统计的老师所不屑
5、《Understanding Statistics in the behavioral science(影印版)》 中国统计出版社
和上面那本是一个系列的。老外的书都挺有意思的
6、《探索性数据分析》中国统计出版社 和第一本是一个系列的。大家好好看看陈希儒老先生做的序,可以说是对中国数理统计的一种反思。
二、回归部分
1、《应用线性回归》 中国统计出版社
还是著名的蓝皮书系列,有一定的深度,道理讲得挺透的。看看里面对于偏回归系数的说明,绝对是大开眼界啊!非常精彩的书
2、《Regression Analysis by example (3rd Ed影印版)》
这是偶第一本从头到底读完的原版统计书,太好看了。那张虚拟变量写得比小说都吸引人。没什么推导,甚至说“假定你有统计软件可以算出结果”,主要就是将分
析,怎么看图,怎么看结果。看完才觉得回归真得很好玩
3、《Logistics回归模型——方法与应用》 王济川 郭志刚 高等教育出版社 不多的国内的经典统计教材。两位都是社会学出身,不重推导重应用。每章都有详细的Sas和SPSS程序和输出的分析。两位估计洋墨水喝得比较多,中文写的书,但是明显老外写书的风格
三、多元
1、《应用多元分析(第二版)》 王学民 上海财经大学出版社
现在好像就是用的这本书,但是请注意,这本书的亮点不是推导,而是后面和SAS结合的部分,以及其中的一些想法(比如P99 n对假设检验的影响,绝对是统计的感觉,不是推推公式就能感觉到的)。这是一本国内很好的多元统计教材。
2、《Analyzing Multivariate Data(英文版)》 Lattin等著 机械工业出版社 这本书有很多直观的感觉和解释,非常有意思。对数学要求不高,证明也不够好,但的确是“统计书”,不是数学书。
3、《Applied Multivariate Statistical Analysis (5th Ed影印版)》 Johnson & Wichem 著 中国统计出版社
个人认为是国内能买到的最好的多元统计书了。Amazon 上有人评论,评价很高的。不过据王学民老师说,这本书的证明还是有不太清楚,老外实务可以,证明实在不咋的,呵呵
四、时间序列
1、《商务和经济预测中的时间序列模型》 弗朗西斯著
Amazon 上五星推荐的书,讲了很多很新的东西也非常实用。我看完才知道,原来时间序列不知有AR(1) MA(1)啊,哈
2、《Forecasting and Time Series an applied approach(third edition)》 Bowerman & Connell 著
本书的主讲Box-Jenkins(ARIMA)方法,附上了SAS和Minitab程序
五、抽样
1、《抽样技术》 科克伦著 张尧庭译
绝对是该领域最权威,最经典的书了。王学民老师说:这本书不是那么好懂的,数学系的人,就算看得懂每个公式,未必能懂它的意思(不是数学系的人,还是别看了吧)。
2、《Sampling: Design and Analysis(影印版)》 Lohr著 中国统计出版社
讲了很多很新的方法,无应答,非抽样误差,再抽样,都有讨论。也很不好懂,当时偶是和《Advance Microeconomic
Theory》一起看的,后者被许多人认为是梦魇,但是和前者一比,好懂多了。主要还是理念上的差距。我们的统计思想和数据感觉有待加强啊
六、软件及其他
1、《SAS软件与应用统计分析》 王吉利 张尧庭 主编
好书啊!!!!
2、《SAS V8基础教程》 汪嘉冈编 中国统计出版社
主要讲编程,没怎么讲统计。如果想加强SAS编程可以考虑。
3、《SPSS11统计分析教程(基础篇)(高级篇)》 张文彤 北京希望出版社
当初第一次看这本书,发现怎么几乎都看不懂,尤其是高级篇,现在终于搞清楚了:)
4、《金融市场的统计分析》 张尧庭著 广西师范大学出版社
张老师到底是大家,薄薄的一本书,言简意言简意赅,把主要的金融模型都讲清楚了。看完会发现,分析金融单单数学模型还是纸上谈兵,必须加上统计模型和统计方法才能真正应用。本书用的多元统计(代数知识)比较深
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20