
个人大数据时代的到来:2014年时间总结
你可能没有记录时间开销的习惯,但你是否想知道从一年的时间开销数据中能看出什么呢?剑飞童鞋的这篇文章可以满足你的好奇心。
前面有一篇文章阅读写作是基本体系,提到了阅读方面的时间总结分布。 个人大数据时代的到来 里面涉及到多个维度,其中第一个维度便是时间,实际上,也只有时间总量是确定的,一天24小时,一年8760小时,如果一个人活到95岁,时间总量83万2200小时,基本上也是固定不变的。
关于记录时间的重要性,大家可以看《把时间当作朋友》《奇特的一生》《卓有成效的管理者》,而《人生的智慧》到底说了些什么?(一)中提到的行动建议中也提到了记录时间,以及记录时间的具体方法,链接: 时间记录相关教程:TimeMeter,Itimelog 。
今天来分享一下2014年各个月份以及几个重要维度的时间数据,尤其是和已经进行过时间记录和分析的朋友分享,也许可以把你的数据也分享出来, 一起研究下,采取什么样的行动对未来会产生怎样的结果,并把这件事情进行相当长的时间,比如56年——柳比歇夫的时间记录年数。
一、从维度上来看
交通时间
年度报告,2014年交通时间
在做总结的过程,发现上面这张图似乎是最能反应生活变化的一张图,从直观上即可看出2014年生活节奏、状态所发生的变化,甚至能想起所做出的选择,比其他维度的直观感受更为明显。这里有个建议是,把 交通时间独立出来,在之前的时候做分享的时候特别提到过:分类的时候,把交通时间和睡眠时间独立成两个类别标签进行记录。
在2014年7月29日的分享里面特别提出了一个问题,难道交通时间会因为季节的变化而变化么?原因是2013年第4季度和2014年第1季度 的交通时间呈现出某种规律性。从2014年12个月的分析来看,似乎也交通时间也随着季节的变化而变化,那么,2015年会不会这样呢?
学习成长
年度报告,2014年学习成长时间图
在各个纬度中,学习成长是比较关注的一个环节,总体上来说,还特意保证这一部分的时间分布。从月份上来看,学习成长会变化起伏较大,比如从2月 份的29小时到6月份的126小时,两个月份相差97小时,其实这也是弹性较大的一个维度。如果我们在生活中注意到的维护学习成长的时间,也就能保证分配 到学习上,比如阅读、写作、研究等活动。如果没有分布到学习上,时间也会被其它事情占据。
你是否认为阅读、写作是一项重要的活动?那么,你是否维护了自己在阅读、写作方面的时间?
二、从月份上来看
前面是两个维度的时间,接下来分享各个月份的时间比例图。从比例的变化可以看出各个月份的不同重点。放图之前,想到几个点先说一下。
如果一个人把自己各个不同阶段的时间报告拿出来一看,会发现不同的人生阶段,分布的时间会有很大的不同,而时间分配在什么地方,某种程度上决定你是个什么样的人。而不管这种是时间分配是有意识的还是无意识的,时间记录都能起到一些帮助作用。
有意识的时间分配,是指可以规划自己的时间,对于年纪越大的人来说,越能进行有效的时间分配活动。如果一个人年纪还小,某种程度上,时间是被动 指定。比如小时候需要在学校读书,上课时间就不能被安排去玩;年轻人工作的前几年,如果是一些基础的工作,工作时间不能被随意分配,重点还是在执行。
然而,一个人年纪越大,越能分配自己的时间,比如能选择自己居住在什么样的城市,选择怎样的交通工具。进入法定退休年纪之后,这样的时间分配达 到顶峰,现在人的寿命长,至少还有20~30年的时间可以自由安排。如果老年人保持着某种程度的兴趣爱好来安排自己的时间,无意于找到了最美好的时光。
无意识的时间分配,是指没有注意到时间本身,或者是过一种随意的生活,随心所欲。有些是受制于外界环境,而不能自主地安排时间,也算进这一部分之列。
在我的时间记录体系里面,无论是有意识的时间还是无意识的时间,都建议进行记录,也就是一天记录24小时。
2014年11月29日在深圳新生代DGS分享 个人大数据专题的时候,有提到一个观点:
个人大数据,如果不进行记录,就会消失,再也不会找回来。
这个观点适用于 个人大数据提到的各个维度。读者可以想一下,去年今日、前年今日的各个时段分别在做些什么?如果有进行记录,几乎可以画面感很强地会回忆起来。如果没有记录,尽管已经找到当时所做的事情,也或多或少地会失真。
实际上,如果不是“客观、及时、持续”的记录,这部分时间数据几乎已经消失了。此外,关于使用手机的数据,运动的数据,如果不收集,也会出现这种情况。
关于个人大数据的几个重要原则以及重要观点,有时间再进行分享。也可以先看看2014年11月29日在深圳的一个分享,以下为朋友们的总结:
1. 小玲子:个人大数据的时代来了
2. 赵诣:立足当下看到未来
3.星宿老仙:关于个人大数据工具的笔记
现在继续分析关于2014年各个月份的时间,这里仅仅分享时间比例本身,而不涉及自我总结部分。
2014年1月
时间月报,2014年1月
2014年2月
时间月报,2014年2月
2014年3月
时间月报,2014年3月
2014年4月
时间月报,2014年4月
2014年5月
时间月报,2014年5月
2014年6月
时间月报,2014年6月
2014年7月
时间月报,2014年7月
2014年8月
时间月报,2014年8月
2014年9月
时间月报,2014年9月
2014年10月
时间月报,2014年10月
2014年11月
时间月报,2014年11月
2014年12月
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08