
个人大数据时代的到来:2014年时间总结
你可能没有记录时间开销的习惯,但你是否想知道从一年的时间开销数据中能看出什么呢?剑飞童鞋的这篇文章可以满足你的好奇心。
前面有一篇文章阅读写作是基本体系,提到了阅读方面的时间总结分布。 个人大数据时代的到来 里面涉及到多个维度,其中第一个维度便是时间,实际上,也只有时间总量是确定的,一天24小时,一年8760小时,如果一个人活到95岁,时间总量83万2200小时,基本上也是固定不变的。
关于记录时间的重要性,大家可以看《把时间当作朋友》《奇特的一生》《卓有成效的管理者》,而《人生的智慧》到底说了些什么?(一)中提到的行动建议中也提到了记录时间,以及记录时间的具体方法,链接: 时间记录相关教程:TimeMeter,Itimelog 。
今天来分享一下2014年各个月份以及几个重要维度的时间数据,尤其是和已经进行过时间记录和分析的朋友分享,也许可以把你的数据也分享出来, 一起研究下,采取什么样的行动对未来会产生怎样的结果,并把这件事情进行相当长的时间,比如56年——柳比歇夫的时间记录年数。
一、从维度上来看
交通时间
年度报告,2014年交通时间
在做总结的过程,发现上面这张图似乎是最能反应生活变化的一张图,从直观上即可看出2014年生活节奏、状态所发生的变化,甚至能想起所做出的选择,比其他维度的直观感受更为明显。这里有个建议是,把 交通时间独立出来,在之前的时候做分享的时候特别提到过:分类的时候,把交通时间和睡眠时间独立成两个类别标签进行记录。
在2014年7月29日的分享里面特别提出了一个问题,难道交通时间会因为季节的变化而变化么?原因是2013年第4季度和2014年第1季度 的交通时间呈现出某种规律性。从2014年12个月的分析来看,似乎也交通时间也随着季节的变化而变化,那么,2015年会不会这样呢?
学习成长
年度报告,2014年学习成长时间图
在各个纬度中,学习成长是比较关注的一个环节,总体上来说,还特意保证这一部分的时间分布。从月份上来看,学习成长会变化起伏较大,比如从2月 份的29小时到6月份的126小时,两个月份相差97小时,其实这也是弹性较大的一个维度。如果我们在生活中注意到的维护学习成长的时间,也就能保证分配 到学习上,比如阅读、写作、研究等活动。如果没有分布到学习上,时间也会被其它事情占据。
你是否认为阅读、写作是一项重要的活动?那么,你是否维护了自己在阅读、写作方面的时间?
二、从月份上来看
前面是两个维度的时间,接下来分享各个月份的时间比例图。从比例的变化可以看出各个月份的不同重点。放图之前,想到几个点先说一下。
如果一个人把自己各个不同阶段的时间报告拿出来一看,会发现不同的人生阶段,分布的时间会有很大的不同,而时间分配在什么地方,某种程度上决定你是个什么样的人。而不管这种是时间分配是有意识的还是无意识的,时间记录都能起到一些帮助作用。
有意识的时间分配,是指可以规划自己的时间,对于年纪越大的人来说,越能进行有效的时间分配活动。如果一个人年纪还小,某种程度上,时间是被动 指定。比如小时候需要在学校读书,上课时间就不能被安排去玩;年轻人工作的前几年,如果是一些基础的工作,工作时间不能被随意分配,重点还是在执行。
然而,一个人年纪越大,越能分配自己的时间,比如能选择自己居住在什么样的城市,选择怎样的交通工具。进入法定退休年纪之后,这样的时间分配达 到顶峰,现在人的寿命长,至少还有20~30年的时间可以自由安排。如果老年人保持着某种程度的兴趣爱好来安排自己的时间,无意于找到了最美好的时光。
无意识的时间分配,是指没有注意到时间本身,或者是过一种随意的生活,随心所欲。有些是受制于外界环境,而不能自主地安排时间,也算进这一部分之列。
在我的时间记录体系里面,无论是有意识的时间还是无意识的时间,都建议进行记录,也就是一天记录24小时。
2014年11月29日在深圳新生代DGS分享 个人大数据专题的时候,有提到一个观点:
个人大数据,如果不进行记录,就会消失,再也不会找回来。
这个观点适用于 个人大数据提到的各个维度。读者可以想一下,去年今日、前年今日的各个时段分别在做些什么?如果有进行记录,几乎可以画面感很强地会回忆起来。如果没有记录,尽管已经找到当时所做的事情,也或多或少地会失真。
实际上,如果不是“客观、及时、持续”的记录,这部分时间数据几乎已经消失了。此外,关于使用手机的数据,运动的数据,如果不收集,也会出现这种情况。
关于个人大数据的几个重要原则以及重要观点,有时间再进行分享。也可以先看看2014年11月29日在深圳的一个分享,以下为朋友们的总结:
1. 小玲子:个人大数据的时代来了
2. 赵诣:立足当下看到未来
3.星宿老仙:关于个人大数据工具的笔记
现在继续分析关于2014年各个月份的时间,这里仅仅分享时间比例本身,而不涉及自我总结部分。
2014年1月
时间月报,2014年1月
2014年2月
时间月报,2014年2月
2014年3月
时间月报,2014年3月
2014年4月
时间月报,2014年4月
2014年5月
时间月报,2014年5月
2014年6月
时间月报,2014年6月
2014年7月
时间月报,2014年7月
2014年8月
时间月报,2014年8月
2014年9月
时间月报,2014年9月
2014年10月
时间月报,2014年10月
2014年11月
时间月报,2014年11月
2014年12月
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23