
企业IT迎来拐点,大数据关键业务是集成
新一代信息技术已经在影响企业IT的方方面面,大多数企业都已深刻地意识到,企业IT必须结合云、开发运维和大数据,才能带来颠覆性改变。
其实,IT要面临的真正挑战是大数据的集成。大数据分析被视为是一种真正深入了解客户行为和 IT 性能的方式。 但是,惠普软件 CTO Jerome Labat 表示,虽然现在有多种快如闪电的分析工具,但如果您不能以类似的速度对这些工具提供的深入见解作出响应,那么拥有这些工具就毫无意义。 因此,对于在过去一两年里一直在纳入大数据工具的许多企业来说,新的前沿领域是集成。
“通过深入了解客户,我们可以在他们需要时提供服务和解决方案”,Labat 说, “但前提条件是我有一套目前多数 IT 商店没有的功能和技术”。 缺少的功能包括对实时应用使用数据的快速分析,以及其他功能。“您需要具有快节奏敏捷性的后端基础设施来应对那些创建和销售服务的新方法”。
企业多年来一直在集成云和自动化,虽然开发运维对企业并没有足够的牵引力,但相关的敏捷开发原则已被广泛采用。 Labat 表示,在 2015 年,随着大数据成为最新热门 IT 话题,为了真正获得收益,CIO 将面临将这三者整合在一起的压力。
协同能力
Labat说,真正的目标,即短期目标而不只是在模糊的将来的目标,是迅速利用多种来源的大数据,提供见解并创建新的服务,从而实现所有下游业务目标。 实现这个目标意味着要按序准备好以下三个关键要素:
第一,云。 通过云来快速配置 IT 基础设施和应用服务的能力。
第二,开发运维。 应用和运维团队需要协同工作,才能应对冗长的构建和测试周期。
第三,大数据。 大数据是构成应用或运维目标中下一个迭代步骤基础的深刻见解。
“第一个构建块是快速配置和部署基础设施及应用服务的敏捷性。 这意味着要首先掌握云”。Labat 表示,“一旦可以快速构建和部署环境,第二步要做的就是改变流程,不断创建和部署新的服务,基于使用模式在正确的时间向客户提供正确的产品。” 因此,企业需要开发运维。
但这仍然没有明确要构建什么、何时构建或为谁构建的问题,这就是为什么企业要构建第三个模块(大数据)的根本原因。
机会洞察
Labat 表示,当云、开发运维和大数据达到最佳成熟状态时,就有机会在战略上使用大数据投资来推动真正的、专注于结果的变革。
展望 2015 年,CIO 将不得不投资于大数据,但切记不要构建一个孤立的大数据。 企业必须利用客户相关信息来支持业务合作伙伴,借助实时分析甚至是预测分析来更高效地运行数据中心,还要支持更快地开发更好的应用和服务。并且还要注意,不要陷入技术本身,技术只是 IT 转型及其带来的业务成果的推动者。
“如今,我们过分关注大数据技术的炒作,却缺少对思维模式和流程转型的探讨。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23