京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业IT迎来拐点,大数据关键业务是集成
新一代信息技术已经在影响企业IT的方方面面,大多数企业都已深刻地意识到,企业IT必须结合云、开发运维和大数据,才能带来颠覆性改变。
其实,IT要面临的真正挑战是大数据的集成。大数据分析被视为是一种真正深入了解客户行为和 IT 性能的方式。 但是,惠普软件 CTO Jerome Labat 表示,虽然现在有多种快如闪电的分析工具,但如果您不能以类似的速度对这些工具提供的深入见解作出响应,那么拥有这些工具就毫无意义。 因此,对于在过去一两年里一直在纳入大数据工具的许多企业来说,新的前沿领域是集成。
“通过深入了解客户,我们可以在他们需要时提供服务和解决方案”,Labat 说, “但前提条件是我有一套目前多数 IT 商店没有的功能和技术”。 缺少的功能包括对实时应用使用数据的快速分析,以及其他功能。“您需要具有快节奏敏捷性的后端基础设施来应对那些创建和销售服务的新方法”。
企业多年来一直在集成云和自动化,虽然开发运维对企业并没有足够的牵引力,但相关的敏捷开发原则已被广泛采用。 Labat 表示,在 2015 年,随着大数据成为最新热门 IT 话题,为了真正获得收益,CIO 将面临将这三者整合在一起的压力。
协同能力
Labat说,真正的目标,即短期目标而不只是在模糊的将来的目标,是迅速利用多种来源的大数据,提供见解并创建新的服务,从而实现所有下游业务目标。 实现这个目标意味着要按序准备好以下三个关键要素:
第一,云。 通过云来快速配置 IT 基础设施和应用服务的能力。
第二,开发运维。 应用和运维团队需要协同工作,才能应对冗长的构建和测试周期。
第三,大数据。 大数据是构成应用或运维目标中下一个迭代步骤基础的深刻见解。
“第一个构建块是快速配置和部署基础设施及应用服务的敏捷性。 这意味着要首先掌握云”。Labat 表示,“一旦可以快速构建和部署环境,第二步要做的就是改变流程,不断创建和部署新的服务,基于使用模式在正确的时间向客户提供正确的产品。” 因此,企业需要开发运维。
但这仍然没有明确要构建什么、何时构建或为谁构建的问题,这就是为什么企业要构建第三个模块(大数据)的根本原因。
机会洞察
Labat 表示,当云、开发运维和大数据达到最佳成熟状态时,就有机会在战略上使用大数据投资来推动真正的、专注于结果的变革。
展望 2015 年,CIO 将不得不投资于大数据,但切记不要构建一个孤立的大数据。 企业必须利用客户相关信息来支持业务合作伙伴,借助实时分析甚至是预测分析来更高效地运行数据中心,还要支持更快地开发更好的应用和服务。并且还要注意,不要陷入技术本身,技术只是 IT 转型及其带来的业务成果的推动者。
“如今,我们过分关注大数据技术的炒作,却缺少对思维模式和流程转型的探讨。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06