京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商务智能全面迈入大数据时代_数据分析师
IT技术的演进,对传统行业的商业模式产生着颠覆性的冲击,从云计算、大数据到移动技术,都不可阻挡地影响着消费者和企业。时至今日,全球每天要产生25亿GB的数据,超过16亿的社交媒体用户每天发布着海量的信息,到2015年全球信息总量预计会达到8 ZB。如此海量的数据蕴藏着巨大的财富,这是大数据时代的共识,但是如何从中获取有价值的信息,却成为企业成长和变革过程中的困惑。
经过十多年的沉淀与发展,商务智能无疑是将企业内部数据以及与之相关的外部数据转化为决策支持的有效手段,是企业应对大数据时代的重要战略选择,当然,企业对商务智能技术的应用在十几年间发生了很大的变化。在商务智能领域从业17年的吴韶益提到:十五年前的商务智能项目仅仅需求调研就要耗费一年半的时间,三年过去了等项目实施完成,最初的需求却发生了变化;十年前的商务智能产品已经是百花齐放,但各类产品各自为政、各行其是,企业的认同感并不强;五年前的商务智能解决方案逐渐走向成熟,但依然会出现报表结果不正确的情况。在十几年的发展过程中,商务智能产品随着IT技术的演进大浪淘沙,已经逐渐演化为新一代的商务智能解决方案。
新一代的商务智能解决方案具有统一信息框架的特点,同时融汇了当前四大主流的IT趋势:首先是移动应用,如今企业主管们时间都是碎片化的,移动技术的应用可以帮助他们随时随地进行决策,这也是商务智能应用中很重要的一个要素;其次是大数据,大数据对于商务智能应用的重要性不言而喻,大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力;云技术对商务智能应用同样产生重大的影响,无论是私有云还是公有云,都可以提高商务智能获取海量数据的能力,在云环境下,商务智能的共享性也是很重要的优势,同时云技术可以提升商务智能应用的时效性和商务智能系统的开放性;一体机的迅速发展对商务智能应用也产生着积极的意义,软硬一体化的应用将更大程度上提升数据转换、管理和存取等方面的能力。
甲骨文公司中国区商务智能技术总监赵春立介绍,甲骨文面向商务智能领域的新一代解决方案正是顺应了这几大趋势,提供数据储存和信息探索、全面智能分析、部署集成应用一个完整的解决方案。在甲骨文的产品家族中,面向商务智能分析的产品和解决方案包括:Oracle Endeca Information Discovery、Oracle RTD(Real-Time Decision,实时决策分析工具)、Oracle Exalytics商务智能云服务器、Oracle商务智能基础套件以及Oracle BI Applications。
部署灵活是甲骨文商务智能解决方案的一大特色,据赵春立介绍,其可以在企业内部部署,也可以在外部的云端进行部署,既支持多租户,也可以支持移动部署。商务智能应用的部署与甲骨文Exa的第三代一体机Exalytics相结合,不同于Exadata和Exalogic,Exalytics具备更强大的商务分析能力,可以将分析应用、分析产品和工具都部署到这台一体机上,除了商务智能本身的部署之外,Exalytics还与Hyperion的成本预算等应用进行了结合,可以更大程度提升用户的体验。
凭借灵活的部署能力,以及覆盖中国市场主要地区的22个分公司,甲骨文商务智能解决方案不仅仅面向金融、电信、政府、能源以及制造行业的大型客户,也针对中小企业提供快速部署的方案。吴韶益说,中小企业在应对IT技术发展浪潮中更容易进行变革,对于快速成长的中小型企业,只要客户有需求,甲骨文会有针对性的提供一个短平快的解决方案,帮助客户进行快速的部署。
从传统数据库模式走到大数据时代是每个企业都需要经历的一次涅槃,不管是大型企业,还是处于快速发展期的成长型中小企业,都可以借助新兴IT技术实现企业核心竞争力的跃升。商务智能应用使得企业以全新的角度审视数据资产,而大数据技术的逐渐普及推动着商务智能迈入全新的发展阶段。在这场“技术”催生“应用”的变革中,商务智能应用只有更好地与大数据技术进行结合,才能为企业创造更大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20