京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云计算是大数据价值形成的基础_数据分析师培训
近年来,伴随着移动互联网、物联网、云计算的快速发展,大数据的价值被更多的行业企业所重视、发掘并利用,在当今的数据洪流时代,各类企业在数据的生产、存储、清洗、应用等方面都在进行着全方位的立体创新。
大数据要依靠云计算
降本增效
一直以来,大数据技术被认为是由硬件摩尔定律、并行计算体系创新的技术驱动,互联网应用、智慧地球的业务推动迅猛发展起来的,而大数据应用层面却需要解决成本、效率、质量的多重问题,为此,大数据只有经过云计算的降本增效才能快速发展。
云计算将计算、存储资源低成本、便捷化、弹性可扩展,为大数据这个杀手级的应用提供了可靠的保障。随着数据越来越多、越来越复杂、越来越实时,更需要云计算进行挖掘、提炼、过滤、分析,才能产生价值。
以Hadoop为代表的云计算技术使得对PB级的海量非结构化数据的集中处理和存储成为可能,构建在X86平台上的MPP数据仓库提高了横向扩展性,并使得集中化地对海量结构化数据的处理和存储成为可能,万兆以太网等技术使得大规模数据中心成为可能,OTN技术以及近几年对传输基础设施的投入,使得跨地域大量数据的传输成为可能……由此可见,大数据是落地的云,是云应用的价值体现。
我们看到,集中式存储、分布式数据库为大数据提供了良好的设施保障,而大数据的发展不能再依赖于人的智慧分析能力,它更多地需要机器具备一定的自我学习、自我成长、智慧处理的计算能力。未来一段时间,购买设备自建IT基础设施已经成为一种“作坊”行为,面对互联网、移动互联网催生的产业信息化浪潮,需要云计算这样庞大集群的基础设施,才能保证大数据的产出,才能保证价值服务的形成。
信息安全是大数据的
首要课题
正如Gartner在《大数据时代的美国信息网络安全新战略分析》中所述,“大数据安全是一场必要的战争”。大数据从其起步开始,就与安全问题如影随形。
面对PB到ZB级的海量存储数据,无论是Hadoop、SQL、NoSQL,还是严格的访问设置和隐私管理,对这些不同系统、不同应用关系、不同来源的数据洪流的安全防范,都会存在信息泄露的风险。
而且,大数据分析挖掘技术本身就是风险来源之一。大数据的发展依赖于信息挖掘、分析、清洗、整理的能力,在挖掘过程中,难免会触及挖掘对象的个人信息、隐私数据,甚至成为很多信息处理公司争相渔利的市场,这一点需要政策立法层面的信息保护。
此外,大数据环境下的资源滥用、不安全集成等应用防护风险,身份仿冒、信息劫持等接入风险,恶意篡改、虚拟应用融合风险等大量并存,需要从顶层设计角度关注大数据的系统风险。
美国早在2012年3月22日就将“大数据”上升为国家战略,甚至将大数据定义为“未来的新石油”,并将安全机制上升到国家层面。我国也需要从立法层面规范大数据的信息安全标准、原则、管控手段。
同时,基于云平台的安全技术框架、安全监测技术保障、应用防护安全应用、云端的安全审计等也是必不可少的,这样“云计算能力+云存储能力+大数据技术+安全防护”才是大数据快速发展的根本。
运营商开展数据经营
大有可为
在互联网乃至移动互联网时代,运营商是数据交换的中心,运营商的客服系统、业务平台、网络管道都产生着大量的数据,这些数据的精准分析有利于改善客户体验、优化网络质量、刺激业务创新、开展精准营销,可见,数据经营已经成为大势所趋。
大数据为运营商带来前所未有的机遇。一是运营商具有庞大的基础网络,具有用户聚合优势,已经成为客户应用大数据的重要入口。二是大数据对云平台、对基础设施的高度要求,为运营商网络平台及应用服务的全面升级提供了广阔的市场空间。三是运营商的数据经营将产生更灵活更创新的商业模式,安全地提供数据挖掘服务,为丰富互联网应用、中小企业发展、产业行业发展会做出更多的贡献。
当然,运营商数据经营还存在一定的挑战。一方面,运营商的内部系统多数存在分省建设、模型迥异、标准不统一等问题,这对大数据要求的集中整合和实时交互是个巨大挑战;另一方面,原有高端商用系统多数具备结构化数据的处理能力,需要提升面向互联网应用的大量非结构化数据处理能力。
运营商已经纷纷启动大数据经营与服务。在内部应用上,以集中数据为指引,统一顶层架构设计、集中数据统一管理、开放数据能力服务,以数据集中引领生产系统集中,促进生产系统逻辑集中和流程贯穿。在外部服务上,运营商基于IaaS层基础电信能力,开展PaaS、SaaS层产品合作,沉淀并挖掘有价值的数据服务信息,向特定细分市场有选择、有目标地安全开放。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26