京公网安备 11010802034615号
经营许可证编号:京B2-20210330
爱立信:用大数据提升运营商NPS
2015年世界移动通信大会(MWC)期间,爱立信发布了大数据分析套件Expert Analytics 15.0。这套方案可以帮运营商预测NPS,并且提出改进方案。
NPS是目前最流行的客户忠诚度分析指标,用以计量客户向其他人推荐企业业务的可能性。在同一个用户调查样本中,业务推荐者的比例减去业务贬损者的比例,即为NPS。苹果、飞利浦等公司很早就启动了NPS考核,并将其视为“未来利润”。
对当前的运营商而言,更高的NPS不仅意味着领先于其他运营商,同样也可以在面对OTT冲击时降低用户流失率。
但是,3月3日,爱立信副总裁兼OSS&CEM产品管理主管Shamir Shoham在接受记者采访时表示,目前绝大部分电信运营商的NPS都低于5%,甚至很多为负值。而相比之下,苹果、Google等互联网公司的NPS超过70%。
“运营商的用户忠诚度远不及互联网企业。”Shamir Shoham对记者表示,“5%是很危险的,运营商至少要提升到30%以上。”
运营商的挑战
据Shamir Shoham透露,目前爱立信的大数据分析套件已经在数个运营商网络中得到验证。
其中,中国移动于2015年正式引入NPS(净推荐值)考核指标,启动经营策略转型,试图通过重视客户生命周期管理,培养忠诚客户。
在此之前的2014年8月,中国移动耗时半月在广东、北京等10个省市进行用户满意度调研。在调研报告中,中国移动称其NPS值为39.7%,而4G业务NPS值则为48%,两项NPS数值均远高于行业平均水平。该报告认为网络、自费、服务要素的提升是用户满意度较高的主要原因。
但是,需要指出,该报告只提到了“推荐者”的关注点,对于更受重视的“贬损者”,该报告并未分析原因。
同时需要指出的是,中国移动的此份NPS报告采用了业内最常用的问卷调查方式,这种方式很容易受到调查手段、调查时间、调查样本、客户心态、企业考核指标,甚至活动礼品等多方面的影响,导致这一重要数据失真。
“即便数据可靠,运营商仍然需要去分析影响用户忠诚度的原因和关键要素。”Shamir Shoham认为:运营商需要有效的方法准确判断NPS,并且搞清楚用户为什么不满意,然后才能改进服务体验,“整个流程耗时长、准确率低,这是运营商最大的挑战”。
德瑞咨询首席顾问宋永军在谈及中国移动NPS战略时也曾表示:运营商需要制定清晰的操作方案,比如针对NPS贬损者指标的深入调查分析,确保贬损者背后原因的挖掘;同时考虑将贬损度的调查与满意度调查结合,确保能找准客户感知的“痛点”。
除此之外,如果缺少清晰的操作方案,运营商在执行NPS时很有可能“沉迷于得分”。湖北移动客户服务中心康黎曾撰文指出:“目前使用NPS的企业普遍沉迷于‘得分’本身,而不是关注在驱动‘得分’改善的策略、行动以及由此所影响的客户体验上。”他建议,企业应该充分利用客户标签、大数据技术构建高效的策略。
用大数据改进NPS
运营商希望提高NPS,但却始终没有成熟的分析模型支撑运营商在庞大的用户群、复杂的网络环境中得出精准的结论。
Shamir Shoham表示,爱立信针对这一诉求推出了Expert Analytics 15.0分析套件,其可以在线、随时为运营商生成用户服务报告,并且根据爱立信服务水平指数(SLI)预测NPS,“明确告诉运营商,是哪些因素影响了用户满意度”。
他以欧洲某家运营商的案例介绍说,该运营商在某小区的用户中有25%的高价值用户,爱立信收集并分析这些用户的行为,以及对应的网络要素。比如,在线收集用户观看视频的时间,此时的缓冲、下载速率、以及时延指标。对应网页浏览,则采集网页打开时长;而对于用户通话行为,则采集通话时长、质量、计费等等。
“整个过程不影响用户感知。”Shamir Shoham表示,根据爱立信的分析模型,该运营商的SLI为6.09,通过SLI测算出的NPS也非常低。
Shamir Shoham表示,运营商可以针对SLI提出的问题加以改进,而前文提及的欧洲运营商,通过这套系统使得其高价值用户忠诚度明显提升,NPS超过了30%,“整个过程,运营商都不需要进行问卷调查”。
对于高忠诚度用户,运营商可以进一步开展位置信息、定向广告等业务。“目前我们正在与很多运营商进行这些尝试,很快会公布成果。”Shamir Shoham将此称之为大数据的“货币化”,是运营商通过NPS实现经营转型的下一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22