
爱立信:用大数据提升运营商NPS
2015年世界移动通信大会(MWC)期间,爱立信发布了大数据分析套件Expert Analytics 15.0。这套方案可以帮运营商预测NPS,并且提出改进方案。
NPS是目前最流行的客户忠诚度分析指标,用以计量客户向其他人推荐企业业务的可能性。在同一个用户调查样本中,业务推荐者的比例减去业务贬损者的比例,即为NPS。苹果、飞利浦等公司很早就启动了NPS考核,并将其视为“未来利润”。
对当前的运营商而言,更高的NPS不仅意味着领先于其他运营商,同样也可以在面对OTT冲击时降低用户流失率。
但是,3月3日,爱立信副总裁兼OSS&CEM产品管理主管Shamir Shoham在接受记者采访时表示,目前绝大部分电信运营商的NPS都低于5%,甚至很多为负值。而相比之下,苹果、Google等互联网公司的NPS超过70%。
“运营商的用户忠诚度远不及互联网企业。”Shamir Shoham对记者表示,“5%是很危险的,运营商至少要提升到30%以上。”
运营商的挑战
据Shamir Shoham透露,目前爱立信的大数据分析套件已经在数个运营商网络中得到验证。
其中,中国移动于2015年正式引入NPS(净推荐值)考核指标,启动经营策略转型,试图通过重视客户生命周期管理,培养忠诚客户。
在此之前的2014年8月,中国移动耗时半月在广东、北京等10个省市进行用户满意度调研。在调研报告中,中国移动称其NPS值为39.7%,而4G业务NPS值则为48%,两项NPS数值均远高于行业平均水平。该报告认为网络、自费、服务要素的提升是用户满意度较高的主要原因。
但是,需要指出,该报告只提到了“推荐者”的关注点,对于更受重视的“贬损者”,该报告并未分析原因。
同时需要指出的是,中国移动的此份NPS报告采用了业内最常用的问卷调查方式,这种方式很容易受到调查手段、调查时间、调查样本、客户心态、企业考核指标,甚至活动礼品等多方面的影响,导致这一重要数据失真。
“即便数据可靠,运营商仍然需要去分析影响用户忠诚度的原因和关键要素。”Shamir Shoham认为:运营商需要有效的方法准确判断NPS,并且搞清楚用户为什么不满意,然后才能改进服务体验,“整个流程耗时长、准确率低,这是运营商最大的挑战”。
德瑞咨询首席顾问宋永军在谈及中国移动NPS战略时也曾表示:运营商需要制定清晰的操作方案,比如针对NPS贬损者指标的深入调查分析,确保贬损者背后原因的挖掘;同时考虑将贬损度的调查与满意度调查结合,确保能找准客户感知的“痛点”。
除此之外,如果缺少清晰的操作方案,运营商在执行NPS时很有可能“沉迷于得分”。湖北移动客户服务中心康黎曾撰文指出:“目前使用NPS的企业普遍沉迷于‘得分’本身,而不是关注在驱动‘得分’改善的策略、行动以及由此所影响的客户体验上。”他建议,企业应该充分利用客户标签、大数据技术构建高效的策略。
用大数据改进NPS
运营商希望提高NPS,但却始终没有成熟的分析模型支撑运营商在庞大的用户群、复杂的网络环境中得出精准的结论。
Shamir Shoham表示,爱立信针对这一诉求推出了Expert Analytics 15.0分析套件,其可以在线、随时为运营商生成用户服务报告,并且根据爱立信服务水平指数(SLI)预测NPS,“明确告诉运营商,是哪些因素影响了用户满意度”。
他以欧洲某家运营商的案例介绍说,该运营商在某小区的用户中有25%的高价值用户,爱立信收集并分析这些用户的行为,以及对应的网络要素。比如,在线收集用户观看视频的时间,此时的缓冲、下载速率、以及时延指标。对应网页浏览,则采集网页打开时长;而对于用户通话行为,则采集通话时长、质量、计费等等。
“整个过程不影响用户感知。”Shamir Shoham表示,根据爱立信的分析模型,该运营商的SLI为6.09,通过SLI测算出的NPS也非常低。
Shamir Shoham表示,运营商可以针对SLI提出的问题加以改进,而前文提及的欧洲运营商,通过这套系统使得其高价值用户忠诚度明显提升,NPS超过了30%,“整个过程,运营商都不需要进行问卷调查”。
对于高忠诚度用户,运营商可以进一步开展位置信息、定向广告等业务。“目前我们正在与很多运营商进行这些尝试,很快会公布成果。”Shamir Shoham将此称之为大数据的“货币化”,是运营商通过NPS实现经营转型的下一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01