京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师等级认证考试:
LevelⅠ:统计概率基础知识,数据库基础知识,解决简单的数据处理与数据分析。
LevelⅡ:多元统计、数据挖掘、数据建模、数据库及商业智能等知识,利用软件进行复杂数据的处理和案例分析,并得出规范的数据报告。
LevelⅢ: 除以上知识点还包括数据挖掘高级算法,Hdoop,SAS与R编程技术等,利用工具完成复杂数据分析项目,做出报告、提供决策并管理团队执行部署。
三个等级考试通后由CDA协会颁发等级认证证书,CDA证书为唯一的等级认证依据。此证书可以作为企业事业单位选拔和聘用专业人才的任职参考依据。
报考"CDA数据分析师"条件如下:
Level Ⅰ:本科及以上学历或从事数据分析工作1年以上。
Level Ⅱ:本科及以上学历并从事数据分析相关工作2年以上。
Level Ⅲ:本科及以上学历并从事数据分析相关工作5年以上。
CDA数据分析师考试内容:
Level Ⅰ:单选题
Level Ⅱ:单选+简答
Level Ⅲ:单选+简答+案例分析
CDA数据分析师官方考试最新安排:
时间:2014年12月
地点:北京/上海/广州
考试等级:CDA Level Ⅰ
考试费用:1000元(CDA学员600元)
考试及等级认证证书颁发最终解释权在CDA数据分析师协会(Certified Data Analyst Institute)。
数据分析师:你应具备的基本个人技能
1.信息敏感性及搜集处理能力。
这个社会是个信息社会,信息社会的信息就会多,很多是你不需要的,很多是重复的,要么就是内容重复,要么就是架构重复。而你真正想要的信息恐怕只有沧海一粟,你就是要把这沧海一粟找出来。
处理能力是指沧海一粟的数据得到后,进行组织串联。数据组织起来才是信息。我们要的不是数字,而是信息。
2.文化背景:熟悉各个层次的人群的属性及思维方式。
你必须了解你的领导做过什么,习惯的思维方式,否则你的报告他是看不懂的,你应该以领导的思维方式去写报告,而不是你自己的。因为你是给领导服务的。领导是你最大的客户,你的同事是你的伙伴,他们帮助你服务你的客户,而你真实的客户则是你的供货商,他们提供服务你领导一切素材。所以,你要利用你的供应商,在伙伴的帮助下,服务好你的客户。你必须理解你的‘客户’,‘伙伴’,‘供应商’在想什么,了解他们的思维方式,甚至爱吃什么,抽什么样的烟,喝什么样的咖啡,喜欢安静的喝茶,还是去泡吧。
3.熟悉心理学,并做过问卷调查等实验。
心理学必须学会,也许你是心理学毕业的,也许你说我很会说。其实一个EQ高的人和一个在社会上混了多年的人,不用学心理学也知道你在想什么。他们都是心理学的大家,虽然他们不会提心理学这个词。不过,这个只是社交。如果做一个网站,你要考虑你的用户在想什么,需要什么,什么情况下会到你的网站来。如果你的网站做个调查,或者要和客服咨询才能找到他要的答案,如价格,那他很可能在3秒内跳到其他网站去了。网站的推荐功能会使这个事情变的很容易。这也许就是ucd吧。
有关心理学还是从文化看起,看看西方文化简史,毕竟现在很多东西都是泊来品。中国文化史,不是社会史,也不是技术史。多了解当前客户群的文化背景。书么,我推荐马斯洛的书,经典的黑格尔的辨证哲学有时候还是毕竟有用的,毕竟马老先生的辨证哲学是从他这里演化过来的。
有了心理学基础去设计问卷就不是什么难事了。不用担心统计用户的答卷不真实。只要不是55开,就能统计整体意向,有成熟的模型的。
4.熟悉相关的行业知识:营销、技术、品牌等。
行业知识是必不可少的,要了解产品,营销,战略,品牌等等是需要很长时间的,像互联网行业,你要懂前台的ui设计,不要想加个修改功能会提供客户的满意度,但是技术实现可能要加几十个k的流量,如果是千万的用户对服务器,流量,都会压力大。而且pc, 移动终端的还要同步,更不要说,内容反复的修改了,本来说油价上涨的,可能改成奥沙利文大战希金斯了。
5.熟悉数学模型的缺点。
数学模型的实用都有自己的数据要求的,如对分布的数据要求均匀,不要太稀疏,欧式距离不要不均匀等等。只有熟悉的模型的缺点和适用范围,你才能保证自己的模型应用的够顺利,不要老盯着那些传统模型不放,那些模型都很经典,经典意味着通用,以为着不适合个例,意味着你要修改模型以适用于当前的情况,这要求你能懂的模型。
6.性格的韧度。
数据分析师经常会遇到这样的情况:1.辛苦做了几天的数据,对比事实根本不合理。2.由于模型的局 限性,数据的不良性产生的巨大误差。3.业务改变使自己的模型改变,进而使数据结果失效。4.报告的书写不够规范,被同事,老板骂。这些都需要我们自己去解决,而不是抱怨。没人想听到你的抱怨和一些消极的词汇,这只会让人感觉你的个人素质不足以满足不同人的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01