
CDA数据分析师等级认证考试:
LevelⅠ:统计概率基础知识,数据库基础知识,解决简单的数据处理与数据分析。
LevelⅡ:多元统计、数据挖掘、数据建模、数据库及商业智能等知识,利用软件进行复杂数据的处理和案例分析,并得出规范的数据报告。
LevelⅢ: 除以上知识点还包括数据挖掘高级算法,Hdoop,SAS与R编程技术等,利用工具完成复杂数据分析项目,做出报告、提供决策并管理团队执行部署。
三个等级考试通后由CDA协会颁发等级认证证书,CDA证书为唯一的等级认证依据。此证书可以作为企业事业单位选拔和聘用专业人才的任职参考依据。
报考"CDA数据分析师"条件如下:
Level Ⅰ:本科及以上学历或从事数据分析工作1年以上。
Level Ⅱ:本科及以上学历并从事数据分析相关工作2年以上。
Level Ⅲ:本科及以上学历并从事数据分析相关工作5年以上。
CDA数据分析师考试内容:
Level Ⅰ:单选题
Level Ⅱ:单选+简答
Level Ⅲ:单选+简答+案例分析
CDA数据分析师官方考试最新安排:
时间:2014年12月
地点:北京/上海/广州
考试等级:CDA Level Ⅰ
考试费用:1000元(CDA学员600元)
考试及等级认证证书颁发最终解释权在CDA数据分析师协会(Certified Data Analyst Institute)。
数据分析师:你应具备的基本个人技能
1.信息敏感性及搜集处理能力。
这个社会是个信息社会,信息社会的信息就会多,很多是你不需要的,很多是重复的,要么就是内容重复,要么就是架构重复。而你真正想要的信息恐怕只有沧海一粟,你就是要把这沧海一粟找出来。
处理能力是指沧海一粟的数据得到后,进行组织串联。数据组织起来才是信息。我们要的不是数字,而是信息。
2.文化背景:熟悉各个层次的人群的属性及思维方式。
你必须了解你的领导做过什么,习惯的思维方式,否则你的报告他是看不懂的,你应该以领导的思维方式去写报告,而不是你自己的。因为你是给领导服务的。领导是你最大的客户,你的同事是你的伙伴,他们帮助你服务你的客户,而你真实的客户则是你的供货商,他们提供服务你领导一切素材。所以,你要利用你的供应商,在伙伴的帮助下,服务好你的客户。你必须理解你的‘客户’,‘伙伴’,‘供应商’在想什么,了解他们的思维方式,甚至爱吃什么,抽什么样的烟,喝什么样的咖啡,喜欢安静的喝茶,还是去泡吧。
3.熟悉心理学,并做过问卷调查等实验。
心理学必须学会,也许你是心理学毕业的,也许你说我很会说。其实一个EQ高的人和一个在社会上混了多年的人,不用学心理学也知道你在想什么。他们都是心理学的大家,虽然他们不会提心理学这个词。不过,这个只是社交。如果做一个网站,你要考虑你的用户在想什么,需要什么,什么情况下会到你的网站来。如果你的网站做个调查,或者要和客服咨询才能找到他要的答案,如价格,那他很可能在3秒内跳到其他网站去了。网站的推荐功能会使这个事情变的很容易。这也许就是ucd吧。
有关心理学还是从文化看起,看看西方文化简史,毕竟现在很多东西都是泊来品。中国文化史,不是社会史,也不是技术史。多了解当前客户群的文化背景。书么,我推荐马斯洛的书,经典的黑格尔的辨证哲学有时候还是毕竟有用的,毕竟马老先生的辨证哲学是从他这里演化过来的。
有了心理学基础去设计问卷就不是什么难事了。不用担心统计用户的答卷不真实。只要不是55开,就能统计整体意向,有成熟的模型的。
4.熟悉相关的行业知识:营销、技术、品牌等。
行业知识是必不可少的,要了解产品,营销,战略,品牌等等是需要很长时间的,像互联网行业,你要懂前台的ui设计,不要想加个修改功能会提供客户的满意度,但是技术实现可能要加几十个k的流量,如果是千万的用户对服务器,流量,都会压力大。而且pc, 移动终端的还要同步,更不要说,内容反复的修改了,本来说油价上涨的,可能改成奥沙利文大战希金斯了。
5.熟悉数学模型的缺点。
数学模型的实用都有自己的数据要求的,如对分布的数据要求均匀,不要太稀疏,欧式距离不要不均匀等等。只有熟悉的模型的缺点和适用范围,你才能保证自己的模型应用的够顺利,不要老盯着那些传统模型不放,那些模型都很经典,经典意味着通用,以为着不适合个例,意味着你要修改模型以适用于当前的情况,这要求你能懂的模型。
6.性格的韧度。
数据分析师经常会遇到这样的情况:1.辛苦做了几天的数据,对比事实根本不合理。2.由于模型的局 限性,数据的不良性产生的巨大误差。3.业务改变使自己的模型改变,进而使数据结果失效。4.报告的书写不够规范,被同事,老板骂。这些都需要我们自己去解决,而不是抱怨。没人想听到你的抱怨和一些消极的词汇,这只会让人感觉你的个人素质不足以满足不同人的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18