
数据准备是大数据分析的无名英雄 _数据分析师
随着企业花越来越多的时间来分析数据,清理和准备数据的解决方案将会变得更有价值
现在大数据[注]是热门话题,你在任何地方与任何人交谈很难不提到大数据。事实上,大数据的术语有点被过度使用,它对不同的人意味着不同的东西,但所有这些定义都有一个共同点,那就是数据!
上面我们说大数据依赖于商业智能数据,这似乎很明显,但大数据分析的成功需要的不仅仅是原始数据,还需要好的高质量数据。所以,更准确的说法应该是,大数据的成功需要准备好的数据。对于分析,有句古老的格言,“进来是垃圾,出去也是垃圾”,这意味着如果你把大量参差不齐的数据放到分析解决方案,你将会得到不好的结果。
数据的清理和准备历来都是漫长的艰巨的耗时的过程。当笔者还在Yankee Group公司时,他们迁移CRM系统,在迁移工作之前,该公司花了一年时间来清理现有系统中的记录数据,以确保不会迁移不好的数据。虽然他们做了这么多工作,仍然有很多不良信息被迁移过去。
最近,笔者看到一家被称为Paxata的公司,该公司提供的解决方案可以进行所谓的“自助服务自适应数据准备”。在分析或运营报告工作之前,该技术可以整合、清理和形成数据。市面上很多现有的商业智能产品声称可以简化分析过程,但事实是,大多数数据科学家和数据分析师花费大量时间来为分析准备数据。鉴于此,笔者认为,大多数企业宁愿聘请高薪人才找出数据的含义(+微信关注网络世界),而不是清理数据。
Paxata提供数据整个生命周期的准备,包括探索、清理、更换、形成和发布数据以进行分析。该产品还允许不同的数据团队共享相同的数据集,让不同的团队可以同时编辑和访问多个设备的信息。该产品还是一个管理解决方案,它会追踪项目内的每个步骤,并有完全的重放功能来审查已经完成的更改。
Paxata的用户可以提高对大型数据集的分析生产率,同时最小化数据蔓延的危险。该数据分析软件既可作为云服务—确保数据准备的灵活性,也可以作为内部部署的解决方案,它可以整合到Hadoop以更快获取价值。
正如上文所述,大数据分析现在是一个热门话题,但企业和IT领导者需要明白,分析糟糕的数据意味着糟糕的分析结果,可能会造成错误的商业决策。正因为如此,笔者希望看到数据准备技术会开始像大数据一样热门。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01