
迎接大数据时代,你的存储准备好了吗
大数据时代,让人们意识到数据的重要性。对于企业来说,数据关系到企业的发展,甚至直接影响到公司的成败。这也促使了越来越多的企业开始重视存储。
存储涉及的服务器中
对于存储系统来说,随着企业业务的增加,或者业务形式的变化,对存储性能的要求可能会更强。但近些年,CPU、内存等都在快速的进步,而存储的进步却非常有限。如何提高存储系统的性能呢?将闪存应用到服务器中也许是一个非常适合的方式。能够大幅提升存储性能,并且也减少了设备扩展成本。
2.长期存储采用大批量磁带
正如大型机会和数据中心一样,虽然一直被预测被取代,但是一直活得挺好。磁带存储也跟他们一样,虽然关于磁带被磁盘取代的论调一直存在,但是磁带却一直活得很好。而且随着大数据时代的来临,越来越多的数据存储需求以及备份需求对磁带的需求越来越高。
磁带存储的需求比以往更高,而且其性价比要远远高于磁盘,其将是重要的数据备份的工具,长期的数据备份将更加突出磁带的价值。企业需要利用大批量的磁带来缩减存储系统的成本。
3.更多分层
通过存储的分层,来满足不同业务的需求是目前很多企业都在采用的技术,利用分层技术,将对性能需要较高的业务运行在SSD方面,将或者业务对性能需求较低的业务运行在磁盘上。分层技术让企业的存储系统能够物尽其用,让投入发挥到最大值。
4.购买服务器而不是存储阵列
存储阵列以及在存储业务方面发挥了多年的作用,因为他们拥有大量的存储空间。[大数据魔方]但是随着服务器变得越来越强大,其能够存储的数据也越来越多,利用服务器搭建存储SAN或超融合的虚拟SAN是目前的一个发展趋势。这导致了存储阵列的市场份额被服务器挤掉了一部分。
随着软件的发展,虚拟SAN软件可以很容易的运行在服务器中,所以企业在搭建自己业务平台的时候,需要考虑购买的是服务器还是存储阵列。
5.跳到云平台
在云计算发展之初,很多企业出于安全等方面的考虑,并没有将企业的业务放到云平台方面。渐渐的,私有云开始在企业中流行,他的便利以及系统内的安全性被认可,是的其有了快速的发展。
然而,在2015年,私有云将迎来挑战,那就是快速发展的公有云,这些公有云正以快速的发展方式改变了人们的观念。随着谷歌、亚马逊、微软等公有云平台的成熟,越来越的企业将会把自己的业务平台移动办公到云,这将是一个省时省力的好方式。
6.DR即服务
灾难恢复(DR)对于数据存储来说是非常重要的,建立一套完善的IT系统需要完美的灾难恢复系统来支撑,在如今,各种人为、自然的灾害让很多IT系统失去了价值,DR则能够为这些系统恢复到当初的状态,所以完善的存储系统同样需要灾难恢复机制。特别是对于中端用户来说,这个是格外重要的。
小结:大数据时代已经到来,数据将会在未来发挥着越来越重要的作用,{}所以存储系统也将会越来越重要。对于企业用户来说,数据拥有着巨大的魅力,保护好存储将是他们必须要重视的事情,存储系统的改变、完善都需要时刻紧盯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23