京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据需要什么样的人才_数据分析师培训
云计算喊了很多年,现在可以说市场竞争已经非常激烈了。一个概念从提出,到行业认同,到资源和人才涌入,到可以看得见市场规模化竞争,有很长的路要走,这其中的艰辛,恐怕只有身处其中者才能更深刻的体会。
云计算已经走过了概念阶段,过程中各种新技术层出不穷,各种VM正卖得火热,基于容器的Docker又带来了新的哲学,连Google都开源了基于Docker的分布式容器管理平台Kubernetes。
那么大数据呢?和云计算一样,一百个人对于大数据可能有一百种不同的解读。在我看来,大数据就是要把数据通过互联网的方式收集起来、集中存储、打通数据孤岛,并通过互联网的方式利用到在线业务系统中。从这个角度来说,大数据和云计算是不分家的。云计算为大数据提供分布式的海量存储和大规模计算能力,大数据则可能是云计算未来最大的应用场景。
但是到今天为止,大数据远远还没有找到靠谱的商业模式,而成本却呈指数增长。所以不管是在技术还是商业方面,都处于一种怀着兴奋的焦虑状态,投身其中的人都坚信前景很光明,但现实很残酷。如何度过这个残酷的阶段,奔向光明的未来,还需要更多聪明和有执行力的人才投身其中。
所以,大数据需要的人才,首先得有很强的心力,“板凳要坐十年冷”,虽然不会到十年这么夸张,但三到五年的咬牙坚持恐怕是不可避免的。
技术方面,大数据首先当然需要数据人才,从数据分析、到数据开发、到数据挖掘、到近几年很火的机器学习和深度学习算法,不管有没有大数据这个概念,数据本身是一个隐含丰富信息又包含了大量噪声的金矿,各类围绕数据的技术人才,其价值就类似于挖矿的矿工,淘尽黄沙始终到金。
挖矿当然得有工具,而这些工具也在随着大数据的指数增长而迭代进化。在云计算和大数据时代,不管是存储还是计算工具,都升级到了分布式。所以对于分布式系统的研发人才,大数据也是求饥似渴。
矿挖好了,金子也产出了,但如果不进入流通的经济系统,也就是个闪亮的疙瘩,又不能当饭吃。如何将数据包装成可以流通的产品,让市场都认可它的价值?而互联网时代的产品,基本上可以认为是Web化的产品,所以Web产品涉及到的人才,都是大数据所需要的,即使你认为自己根本不懂数据。CDA数据分析师是指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA数据分析师覆盖了国内企业招聘数据分析师所要求的所有技能,包括统计知识、软件应用(SPSS/SAS/R等)、数据挖掘、数据库、报告撰写、项目经验等。CDA数据分析师分为LEVEL ⅠⅡⅢ三个等级,成为一名合格的CDA数据分析师能够胜任企业不同层次的数据分析工作。
然后呢?金子找到了,产品也包装好了,怎么让市场认可呢?大数据的商业化,更需要商业模式的探索者。如何建立整个的交易生态,让金子成为这个生态中买卖双方都一致认可价值的一般等价物?这样的人才,是大数据最急缺的人才。只要市场生态起来了,就不愁卖家和买家了,就业机会也会越来越多,矿工们挖矿也会更来劲了,对吧?
矿挖好了,金子也产出了,但如果不进入流通的经济系统,也就是个闪亮的疙瘩,又不能当饭吃。如何将数据包装成可以流通的产品,让市场都认可它的价值?而互联网时代的产品,基本上可以认为是Web化的产品,所以Web产品涉及到的人才,都是大数据所需要的,即使你认为自己根本不懂数据。CDA数据分析师是指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA数据分析师覆盖了国内企业招聘数据分析师所要求的所有技能,包括统计知识、软件应用(SPSS/SAS/R等)、数据挖掘、数据库、报告撰写、项目经验等。CDA数据分析师分为LEVEL ⅠⅡⅢ三个等级,成为一名合格的CDA数据分析师能够胜任企业不同层次的数据分析工作。
然后呢?金子找到了,产品也包装好了,怎么让市场认可呢?大数据的商业化,更需要商业模式的探索者。如何建立整个的交易生态,让金子成为这个生态中买卖双方都一致认可价值的一般等价物?这样的人才,是大数据最急缺的人才。只要市场生态起来了,就不愁卖家和买家了,就业机会也会越来越多,矿工们挖矿也会更来劲了,对吧?
2014年12月IPO的Hortonworks 2014年营收4600万美元,比上年增长91%,亏损3480万美元。还没有未公开上市的Cloudera也于近期透露了其2014年的财务数据,营收超过1亿美元,增长约100%,新增付费用户数250个,总数达到525个,生态合作伙伴超过1450家。这两家大数据基础技术公司都快达到盈亏平衡点,大数据生态的其他物种也该开始向多样化进化了。2015年可能是大数据的商业化和生态化的元年,你准备好加入这场大数据的盛宴了么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22