
金融机构如何驾驭大数据_数据分析师
大数据对于金融机构的重要性不言自明,然而,目前国内金融机构在大数据应用上还处于起步阶段。2月11日,波士顿咨询公司(BCG)发布最新报告《互联网金融生态系统2020系列报告之大数据篇:回归“价值”本源:金融机构如何驾驭大数据》。报告指出,国内金融机构若想将数据转化为价值,创造竞争优势,需要推动自上而下的内嵌式变革。其中,建设团队是核心、形成机制是保障、转变思维是根本。
这份报告重新定义了大数据的本质;揭示了大数据在哪些方面改变了传统数据运作模式;对照全球金融业大数据应用的前沿案例,指出了阻碍国内金融机构发展大数据应用的三大因素;最后系统化地提出了金融机构为驾驭大数据亟需作出的三大转变。
报告作者之一、BCG资深合伙人、亚太区金融机构专项业务负责人邓俊豪(Tjun Tang)表示:“在互联网金融时代中,数据是至关重要的战略资源,而驾驭大数据的能力也是金融机构在新环境下的关键成功要素。”
“4V”本质
报告认为,成就大数据的不仅仅是传统定义的“3V”,即数量(Volume)、速度(Velocity)和种类(Variety),更重要的是“第四个V”,即价值(Value)。当量级庞大、实时传输、格式多样的全量数据通过某种手段得到利用并创造出商业价值,而且能够进一步推动商业模式的变革时,大数据才真正诞生。
“4C”特性
报告指出,大数据从四个方面(“4C”)改变了金融机构的传统数据运作方式。这四个方面包括:数据质量的兼容性(Compatibility)——大数据通过“量”提升了数据分析对“质”的宽容度;数据运用的关联性(Connectedness)——大数据使技术与算法从“静态”走向“持续”;数据分析的成本(Cost)——大数据通过降低成本门槛创造了大量机会;数据价值的转化(Capitalization)——大数据为金融机构快速试错、建立“触角优势”提供了新的工具和动力。
报告作者之一、BCG合伙人兼董事总经理何大勇表示:“我们在海外银行业和保险业观察到很多大数据应用的成功案例,但国内目前对大数据的应用仍是‘雷声大、雨点小’。究其原因,主要是存在数据整合难、落地动手难和资源协调难等障碍。为了解决这些问题,国内金融机构必须重新审视自身的基础设施以及所处环境,以开放的思维与整个数据生态有效对接。”
“TMT”关键点
BCG通过调研发现,掣肘大数据在金融机构发展的关键因素主要存在于管理层面。为了驾驭大数据,金融机构需要在技术的基础上引入以价值为导向的管理视角,推动自上而下的内嵌式变革。其中,建设复合型团队(Team)是核心,形成机制(Mechanism)是保障,转变思维(Thinking)是根本。在这三个关键点(“TMT”)上进行突破应成为传统金融机构将数据转化为价值的核心抓手。
报告作者之一、BCG董事经理张越表示:“大数据是技术发展所带来的不可逆转的大趋势,它所代表的是人类对世界认知视角的演化,以及对世界掌控能力的进步。对金融机构而言,及早出发,积极、理性地试水投入,让整个机构能够借力大数据来尽快实现自我提升,这是将数据持续转化为生产力乃至竞争优势的必由之路。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22