
用大数据做发展助力的供应链金融_数据分析师培训
数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
对企业而言,大数据所带来的巨大利益具有无限的吸引力,大数据将为人们的生产生活创造前所未有的价值。随着大数据的来袭以及互联网金融的飞速发展,引发了物流界、金融界及商业界等各界人士对互联网时代供应链金融发展新一轮的思考:物流、商流、资金流以及第三方信息流如何在供应链金融这一平台上相互结合?企业如何应用大数据推动供应链金融发展?各类金融机构如何利用好各个维度的数据做好信用管理,从而发挥出供应链金融的协同效应?在前不久新金融联盟主办的“金融极客会”第三期沙龙活动上,上述话题成为与会者热议的焦点。
数据应用滞后制约行业发展
与传统的金融模式不同,供应链金融服务的主体大多是中小企业,它围绕一家核心企业,通过数据、信息等将供应商、制造商、分销商、零售商直到最终用户连成一个整体,为整个链条上的企业提供融资服务,实现整个供应链的不断增值。不过,在具体的运营过程中,由于大数据应用滞后、信息不对称,也引发了行业一系列问题,制约了供应链金融的发展。具体体现在:
数据缺失,是影响供应链金融发展的一大因素。
数据通常包括三种类型,第一种是商业数据,指的是合同或订单数据;第二种是金融数据;第三种是货物数据。银行将这三种数据进行比对,就可以看出物流商提供数据是否真实。
然而,由于信息化发展迅速,大数据更新速度快,中小企业贷款无法给商业银行提供完整的数据,使得银行很难判断数据的真实性,所以不敢轻易给中小企业放贷,使得中小企业融资难、融资贵问题进一步凸显。
数据造假,是制约供应链金融发展的又一诱因。
目前,我国供应链管理和银行信用体系建设还处在初始阶段,完整的信用体系还未形成,使得供应链上下游企业信用保证缺乏协调监管,造成企业有可能给金融机构提供虚假或不实信息,给金融机构带来巨大的风险。
最让银行困惑的是无法判断数据的真伪,比如银行和某企业合作,只能判别该企业是哪个第三方物流企业的服务商,进而接入物流企业的端口,获取物流企业真实的数据,银行根据这个数据给合作企业提供一定的融资比例额度。但是资金流回流问题根本就控制不了,如果合作企业倒闭,银行只能向下游的第三方物流企业要钱,物流企业如果不配合还款,银行也没有办法。”
综合来看,数据缺失和数据造假,都会给金融机构以及供应链合作企业带来严重的后果和不良影响。如何判断数据真伪,通过大数据运用提高风险控制,成为当今供应链金融行业面临的重点问题。
多聚并举推动大数据应用
建立健全数据法制体系。供应链金融领域强化法制建设,实现数据立法,不仅对金融机构有好处,而且有利于社会诚信和信用制度的完善,这会有效降低企业的经营成本,提供运营效率。
在沙龙上,对于银行代表提出的关于不知道如何判断数据真实性的困惑,肖星给出了建议。他说,用假数据伪造单据就不单纯是商业贷款,而是诈骗,银行应当使用法律武器保护自己。如果有法律机关和政府相关部门的介入,对监管数据的真实性和完整性进行监管,那么银行会避免很多不必要麻烦,只需做的就是将商业数据、订单数据、金融数据进行比对来判断数据应用是否可行。
建立数据共享体系。数据最有价值的不是数据本身,而是对数据的加工,要成为重要的资本和财富,因此数据共享才对社会最有益。美国政府即提出,数据是一项有价值的国家资本,应对公众开放,而不是把其禁锢在政府体制内。
建立大数据的诚信系统。供应链金融不仅是一条资金链、产业链、信息链,还是一条信用链,参与供应链各个环节的企业和个人会相互影响,所以建立诚信系统平台,对于应用大数据促进供应链金融发展是一个有效的举措。
强化对数据的监控管理。从事供应链金融业务,强化数据监控,不只是针对银行,对于供应链上的每一个企业都很重要。强化数据监管,利于企业强化供应链管控,推动供应链上下游的高效协同,避免信息不对称问题,进而助于企业减少供应链金融业务带来的风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30