京公网安备 11010802034615号
经营许可证编号:京B2-20210330
农商行携手神州信息迈入基于大数据的移动营销
大数据是目前最前沿的一个领域。在大数据时代,通过海量信息收集、数据处理和数据分析,纷繁复杂的人类行为变得有规律可循,旧的生产关系和生活方式落伍出局,新的产业生态和游戏规则喷薄而出,任何领域都不可能例外,金融更是如此。
面对这场"数据地震",怎样才能有效掌握收集数据、分析数据、利用数据的办法和途径,怎样才能在海量数据中去伪存真、变"数"为宝,将成为广大商业银行特别是中小银行必须认真思考和探索的全新课题。
越来越多的农村信用联社高瞻远瞩,为了满足法人行社对数据的个性化需求,通过原始数据下发,鼓励有条件的行社先行先试、创新转型。福建某农商银行作为当地的先行者,在近30年的发展历程中,始终坚持科技引领业务发展的战略思维,为中小企业、个体户和广大农村经济发展提供了强有力的金融支撑。该行领导对信息科技高度重视,并积极通过IT创新提升客户服务水平,向最终户提供差异化服务。2014年6月,该行携手神州数码融信软件有限公司(神州信息旗下企业),启动了行内最大的项目--数据集成综合运用平台建设。
由于当地的中小企业、个体户多,银行数量也多,各家银行之间争夺客户的竞争十分激烈。面对这一现状,行领导考虑利用大数据思维在移动营销方面寻找转型过程中的突破点,提出利用行内的数据对客户进行360度分析,找出目标客户,并向客户主动推荐产品,依此在本地区银行内率先为客户提供精准营销服务。
这一想法落在科技层面,则要涉及到大数据收集和整合应用,数据抽取转换分析工具使用,以及跨PC和移动端等平台的应用开发。行方与神州数码融信需要共同解决三大问题:第一,种类繁多且分散在省联社、行内系统和各业务部门的数据该如何整合?第二,不同的设备,后台服务器、PC机、前端PAD和营业网点排队机之间该如何进行通讯与集成?第三,营销过程中总行管理人员、柜员、大堂经理、客户经理该如何分工?这其中涉及了数据、技术、人员、设备和管理流程的协同,系统工程非常复杂,神州数码融信 "量体裁衣"提出了适合的解决方案。
系统整体架构
围绕该行"大数据战略"的部署,双方多次讨论形成了建设思路,以"资源整合、客户为本、绩效驱动、业务转型"为目标,通过企业级数据整合,实现银行内部和外部、结构化和非结构化的数据集成,利用神州数码融信独有的金融数据模型建设数据平台,利用智能分析推荐平台和移动端APP应用搭建移动营销平台。
在实际建设中,该项目的重点是依据客户基本信息、账户数据、交易数据、行为数据,深度挖掘大数据中隐藏的价值,为银行寻找目标客户,分析、推荐产品实现精准营销。同时,通过移动端设备为客户提供差异化服务,借助PAD,手机、短信、微信等移动设备和电子化渠道初步建立了O2O的营销服务体系。除了重点建设移动营销平台外,该项目还建设了行内综合报表系统、领导驾驶舱、客户管理系统、智能排队系统、商户管理系统等数据应用系统。该套数据应用综合解决方案,不仅实现了该行科技的又一次腾飞,更为迎接全新的"大数据"信息化时代到来打下了坚实的基础。此次数据的成功应用,将助力银行创造先发竞争优势,打造不可复制的核心竞争力。
神州数码融信专家介绍,分析推荐是基于大量数据的运算与分析,分析推荐平台定位是提供可以根据不同的应用需求进行参数化配置的个性化数据分析、推荐服务,并提供基于风险的预警。该平台旨在帮助客户通过灵活的参数调整,来达到最优的推荐效果,进而帮助用户快速便捷的发现需要的信息,在合理的参数体系下,通过适合的方式获取需要的信息,提高用户体验,最终提升客户的忠诚度以及客户对服务的满意度。
当前,以互联网为代表的现代信息科技,特别是门户网站、社区论坛、微博、微信等新型传播方式的蓬勃发展,移动支付、搜索引擎和云计算的广泛应用,已构建起了全新的虚拟客户信息体系,并将改变现代金融运营模式。社交媒体的兴起为银行创造了全新的客户接触渠道,来自银行网点、PC、移动终端设备、传感器网络等传来的结构化、非结构化的海量数据,为银行创造了深化客户挖掘、强化交叉销售、加快产品创新的广阔空间。这也为银行突破同质性,实施差异化战略提供了支持。
因此该项目未来的发展,是在第三方电商数据方面和社交媒体数据方面进行更多、范围更广的集成,为全面、准确分析客户数据,分析推荐产品,让用户拥有极佳的用户体验方面持续优化和完善,推动该行成为本地区、乃至全省金融业的典范与标兵。
数据之争就是未来之争。未来的商业银行不仅要做数据大行,更要做数据分析、数据解读的大行,占据价值链核心位置,从数据中获得洞察力,引领传统模式变革。拥抱"大数据",神州数码融信将与更多的中小银行一起把握时代契机,为银行的用户提供高品质、差异化服务,助推金融市场的持续繁荣与发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22