
解读工业与物联网,云计算和大数据的关系
互联网新概念层出不穷,在云计算,物联网,大数据火热之后,工业4.0在2014年受到越来越多的关注,在2015年成为新的热点之前,我们有必要了解这个新概念究竟是什么含义,它和其他互联网概念间到底是什么关系。
2013年4月,德国政府在2013年4月的汉诺威工业博览会上正式推出提出“工业4.0”战略,其目的是为了提高德国工业的竞争力,在新一轮工业革命中占领先机。
德国学术界和产业界认为,“工业4.0”概念即是以智能制造为主导的第四次工业革命,或革命性的生产方法。该战略旨在通过充分利用信息通讯技术和网络空间虚拟系统—信息物理系统(Cyber-Physical System)[5] 相结合的手段,将制造业向智能化转型。
德国的工业4.0没有明确指出它与互联网有什么关系,通俗的说,就是无数个行业被互联网浪潮冲击后,互联网开始改造工业制造业了。
我们在2007年发表的互联网进化论论文中提出“互联网将向着与人类大脑高度相似的方向进化,它将具备自己的视觉、听觉、触觉、运动神经系统,也会拥有自己的记忆神经系统、中枢神经系统、自主神经系统,也就是是说,互联网正在形成一个互联网大脑”,并绘制了下列互联网未来结构图.
2014年我们曾经用这幅图分析了物联网,云计算,大数据与互联网的关系:
1.物联网是互联网大脑的感觉神经系统,因为物联网重点突出了传感器感知的概念,同时它也具备网络线路传输,信息存储和处理,行业应用接口等功能。而且也往往与互联网共用服务器,网络线路和应用接口,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、信息空间和物理世界(人机物)融为一体
2.云计算是互联网大脑的中枢神经系统,在互联网虚拟大脑的架构中,,互联网虚拟大脑的中枢神经系统是将互联网的核心硬件层,核心软件层和互联网信息层统一起来为互联网各虚拟神经系统提供支持和服务,从定义上看,云计算与互联网虚拟大脑中枢神经系统的特征非常吻合。在理想状态下,物联网的传感器和互联网的使用者通过网络线路和计算机终端与云计算进行交互,向云计算提供数据,接受云计算提供的服务。
3.大数据是互联网智慧和意识产生的基础,也是互联网梦境时代到来的源泉,随着互联网大脑的日臻成熟,虚拟现实技术开始进入到一个全新的时期,与传统虚拟现实不同,这一全新时期不再是虚拟图像与现实场景的叠加(AR),也不是看到眼前巨幕展现出来的三维立体画面(VR)。它开始与大数据、人工智能结合得更加紧密,以庞大的数据量为基础,让人工智能服务于虚拟现实技术,使人们在其中获得真实感和交互感,让人类大脑产生错觉,将视觉、听觉、嗅觉、运动等神经感觉与互联网梦境系统相互作用,在清醒的状态下产生梦境感(Real dream),可以形成如下这幅图:
从这幅图中我们也同样可以看出工业4.0或工业互联网本质上是互联网运动神经系统的萌芽,互联网中枢神经系统也就是云计算中的软件系统控制工业企业的生产设备,家庭的家用设备,办公室的办公设备,通过智能化,3D打印,无线传感等技术使的机械设备成为互联网大脑改造世界的工具。同时这些智能制造和智能设备也源源不断向互联网大脑反馈大数据数,供互联网中枢神经系统决策使用。
总体看,西方企业和理论界不断提出互联网新概念,还比较割裂,但实质上,无论是物联网,云计算,大数据,移动互联网还是工业4.0依然是互联网未来发展的一部分。它们起到不同的作用。
由于中国在互联网领域日趋发达,与中国先进制造业结合,互联网运动神经系统的发育,中国必然会强于德国甚至追赶美国。目前舆论界宣传的德国工业4.0要甩开中国,工业4.0要取代淘宝和天猫,明显是风牛马不相及的事情,充斥了炒作的嫌疑。
补充材料:
工业互联网与工业4.0类似,2013年6月,GE提出了工业互联网革命(Industrial Internet Revolution),伊梅尔特在其演讲中称,一个开放、全球化的网络,将人、数据和机器连接起来。工业互联网的目标是升级那些关键的工业领域。如今在全世界有数百万种机器设备,从简单的电动摩托到高尖端的MRI(核磁共振成像)机器。有数万种复杂机械的集群,从发电的电厂到运输的飞机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08