大数据时代下的电商营销怎么玩_数据分析师
当我们细细品味去年阿里双11取得571亿成绩的同时,不难发现,中国电子商务的市场份额正在向头部靠拢。不管承认与否,市场份额向寡头聚集说明电商行业的垄断风险越来越高。垄断是创新的杀手,如果中国的电子商务只有在天猫、京东这样超级平台上才能玩,这不得不说是一种悲哀。
为何大部分独立电商都面临生存危机?这个问题与产品、营销、营运等诸多因素关联。本文试图从大数据与电商营销层面去做一些思考。
大数据营销的核心
独立电商正在面临前所未有的营销挑战,这种挑战突出体现在三个方面。首先,营销成本越来越高,获客成本居高不下。成本高企的主要因素是媒体对定价权的掌握,以及电商巨头对资源的垄断;其次,随着媒体碎片化越来越严重,营销管理效率受到挑战,机会成本越来越高。电商在找到适合自己的媒体之前,需要一个不小的试错成本和时间积累;第三,促销竞争越来越激烈,用户忠诚度越来越低。一个同行的促销就轻易把用户给挖走,不动用特殊优惠难以触动沉睡的老用户。以往期望有高二购率的高举高打营销模式日渐式微。
电商营销的关键要素,在于营销渠道的选择、营销效率的管控和营销规模的可放大性。不断会有新的渠道出现,然而这个渠道是不是一个优质渠道,主要体现在是否可以达到效率与规模的平衡。
大数据正是这样一个工具,帮助电商进行管控与计算,平衡效率与规模。大数据在电商营销中的应用,核心是做数据资产的保值和增值。大体可分为CRM数据、访客数据和第三方数据三类,数据规模依次呈几何级数递增。所谓保值,是练内功,通过数据发现消费规律,并在此基础上对用户细分和聚类,用适合的工具与用户交流其关心的内容,最终实现用户的转化与再转化;所谓增值,是走出去,基于对自身用户的持续画像,以此在外网寻找“有缘人”,故增值的核心是数据个性绽放,业务需求匹配。不论保值还是增值,应注重积累和持续,而非短平快;注重价值规律由内向外发掘,不同层次的差异化和递进关系,而非一刀切。
大数据与网站优化
电商营销,转化率是关键,提升站内转化率是优化广告效果的基础。电商网站优化的核心KPI就是看转化率是否得到提高、转化成本是否可控。在这一块,美国的Amazon是行业的标杆。Amazon网站上,有超过35%的销售来自于站内推荐系统。推荐引擎是大数据的典型应用,其原理是追踪每一个访客的站内访问行为,并建立推荐模型,预测该用户可能感兴趣购买的商品,然后通过推荐模块在网站页面输出展示这些商品,从而吸引用户点击并购买。
大数据不仅可以洞察消费者的购买兴趣,还可以帮助网站开发者去做UI/UE的优化。通过大数据AB测试,可以了解页面布局和功能设计对于二跳率、转化率的影响,从而避免主观判断UI/UE的优劣,通过数据来持续优化UI/UE。在美国,有专门做AB测试的大数据公司,已经拿到了多轮融资,正在准备上市。在中国,目前电商的接受程度还非常有限,还处于方兴未艾的阶段。
大数据与会员营销
传统的电商CRM,通过RFM模型对已购买顾客进行分组和差异化的营销互动。而事实上,除了已购买顾客,还有大量的到访顾客、兴趣顾客、加入购物车未提交顾客等等,这些潜在购买顾客的数量级可能是已购买顾客的上万倍甚至更高。在大数据时代之前,我们对于这样一个庞大的潜在顾客群是无法管理和营销互动的。大数据使CRM的概念发生了升级,变为VRM(访客关系管理)。
大数据应用将所有网站的到访用户都管理起来,从访问到注册、加入购物车、支付、购买等环节,建立一个客户转化销售漏斗,这是进行广义会员营销的基础。同时,大数据的引入,使得传统的EDM、SMS变得更加智能化、高效率。VRM的思想,是以大数据为基础的数据库营销升级版,这种升级,体现在基础数据、营销内容、触达渠道、评价体系等多个方面。建立符合自身特点的VRM体系,是电商深入开展数据库营销的基础。
大数据与媒体广告
展示广告的程序化购买,是未来的媒体采购主流模式。程序化购买的发展,离不开大数据应用的普及。从媒体端的资源整合,到第一、第二、第三方数据的收集管理,再到智能竞价、动态创意、智能LP的应用,大数据是必要条件和催化剂。
最近一两年程序化购买的发展速度非常快,从单纯的公开市场竞价DSP,到私有化竞价市场PMP的出现,再到移动广告的程序化购买。如此快速的广告采购方式升级,是很多电商所不适应的。反过来看,这些新的媒体采购方式,虽然从理论上能够帮助到电商提升效率、降低成本,而事实上电商在程序化购买的实施过程中,实际效果与其期望值还有不小的距离。
电商要利用大数据做好媒体广告程序化购买,离不开以下几点:
1、要有自身的大数据营销规划和架构,具有大数据营销的技术储备和思想意识;
2、选择DSP供应商要慎重,不能偏听偏信,前期最好多选几家,是骡子是马,拉出来溜溜;
3、科学设定程序化购买的KPI,不能简单照搬其它渠道的KPI要求;
4、合理设定程序化购买项目的启动和评价周期,注重结果,更注重过程;
5、培养自己的大数据营销人才,深入进行大数据洞察,而不是简单外包,浅尝辄止。
大数据与电商营销生态圈
电商营销生态圈,可以看做是媒体、流量、用户、顾客、回头客这几个要素之间的闭环。每个要素,都涉及到一系列的产品和工具。大数据时代之前,我们也有报表,也能看到这些要素之间的递进关系。而大数据时代的来临,仿佛让我们配备了高倍显微镜,能够对这几个要素的结构和流动看的更加清晰,同时大数据又构建的新的游戏规则,使得电商能够用全新的视角和方法来开展新电商营销工作。
大数据让电商营销生态圈变得更加绚丽,对电商营销人的学习能力和执行能力提出了挑战。面对这种挑战,迎头而上是唯一的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03