京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智能交通管理分析大数据加速车联网进程
近年来我国汽车数量爆发式增长,交通问题也越来越明显:我国15座城市交通拥堵日均损失10亿元,我国每年交通事故50万起、因交通事故死亡人数超10万人。城市拥堵问题已经成为制约城市未来发展和整体运行效率的最主要问题之一,极大影响了我国的城镇化过程。造成这一问题的原因一方面来自于我国地少人多的现实情况,城市有限的物理容纳能力同机动车数量高速增长相矛盾,另一方面来自于城市交通管理的落后造成交通资源的错配。西方国家在上世纪九十年代提出智能交通(ITS)的方法,通过信息技术手段将人、车和路三者有机地联系在一起,提高路的使用效率和出行者的通行效率。智能交通的技术逐步被引入国内,成为解决我国交通问题的重要突破口。
智能交通管理内容
智能交通的要旨是提升交通系统的现代化管理水平和交通系统的运营服务水平,促进交通的可持续发展。究其内涵,包括了以下的内容:
1、智能化交通管理。智能交通为交通管理提供了高效、科学的现代化管理手段,在交通管理和交通运营领域,综合应用各种现代科技手段,构建现代化的交通管理系统,使交通管理和运营更为高效。涉及:道路交通监视系统,卡口车辆识别系统,道路流量测试系统,交通违法行为自动识别取证系统,城市交通智能引导系统等。
2、智能化交通服务。交通是社会服务系统,智能交通必须面向社会、服务公众,通过各种智能化的手段,为社会公众提供良好的服务。涉及:城市交通咨询服务中心,交通提示和咨询,交通电台,交通违法行为自动提示和查询。
3、基于智能交通的交通安全保障体系的建设和交通的可持续发展。智能交通通过人、车、路的协同管理,应显着提升交通安全的保障水平;智能交通的发展将有助于建设节能、环保、可持续发展的交通体系。
大数据助力智能交通发展
我们早已生活在数字生活时代,用数据说话是数字化时代的特征,互联网的一个重要的贡献是使数据在线,在线数据存在着局限性,特别是人类日常生活的数据,移动互联网的出现使得这类数据更容易被收集。移动互联网和云计算等信息技术的发展又催生了大数据(BigData)时代的到来。
由于通过对数据进行专业性分析所带来的巨大价值是无限的,大数据成为世界各国政策层面鼎力推动的战略计划,社会各界也刮起了大数据的旋风,围绕大数据的“入口卡位”之战也激烈地上演着,搜索、社交、支付等等都成了必争之地,目前这些数据要塞都算是被行业巨头所把守,百度占据着web数据,阿里占据着电商数据,腾讯占据着社交数据,具有短期不可替代性,而且能形成自己的行业壁垒,如淘宝拒绝百度扒数据,所以搜索专家百度只好痛失电商搜索这个吸金领域。
汽车作为未来最大的一个移动终端,比手机还要强大的衍生功能,而且车联网的产业链够长够深,使得车联网成为大数据的集中体现,可谓是大数据的一个缩影。互联网企业早已在大数据武装下闯入汽车领域抢食,众所周知,Google在无人驾驶汽车领域拔得头筹,正是基于大数据的采集与分析,微软给福特全新开发车载嵌入式系统,谷歌也不遗余力的和奥迪合作,而iOS6也开始发力汽车领域。
当前,在国内互联网竞争的开放程度下,想要在大小巨头的产品版图夹缝中再打造一个入口级产品,那是难乎其难的,但是可以掌控的数据新蓝海并不是没有,因为整个世界时刻都在变化,只要有变化,就有新数据诞生。只不过,大部分数据尚处于线下,如何成功地将“线下数据”转变为“线上数据”是关键,这样才能形成自己的数据壁垒,释放出大数据的真正价值,如早期的大众点评网就是通过扫街模式积累大量餐馆和菜品数据,而逐渐形成了一个在线私有数据体系。
在大数据时代的背景下,车机作为车联网的一个小分支,要想开辟自己的新蓝海而成功突围,就要想法设法建立自己的数据壁垒:
开发自有特色的硬件应是一个方向,采用软硬件结合的方式,辅以互联网的思维去运作,最终会建立庞大的数据体系,在这个体系里打通另外一个是打通海量、异构的、持续更新的用户级数据;
另一个方向是打通跨行业数据,国内互联网公司对于跨行跨领域的数据重视程度相对较低,而数据具有“外部价值”的,就像汽车厂商的自动制动数据结合LBS数据则会揭示公共交通路段的安全性。
再者,服务内容的精准性如果单纯靠服务提供商的力量,花费巨大的人力财力和时间也不一定取得最好效果,车机传统的观念也只是提供导航和娱乐,若以社区互动的形式,则能快速采集到相应的数据,由此也可以衍生出很多增值服务,提升用户体验感,增强用户黏性。
实际上在在数据分析、加工、传播等环节,名目繁多的App都充满了商机。在大数据时代,App仍具有长尾特征,云存储的海量数据和大数据的分析技术也使得对消费者的实时和极端的细分有了成本效率极高的可能。车机厂商务要对用户群体进行细分,甚至要时刻以“个人”为中心,将个人的相关信息进行精确描述,在保护隐私的前提下进行智能化和个性化的服务匹配,这也是WEB2.0革命的自然深化和扩展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20