
大数据迎来“落地年” 视频监控大受裨益
作为时下最火热的IT行业词汇之一,大数据近年来成为各界关注的一大热点。一方面,网民数量不断增加;另一方面,以物联网和智能移动终端等为代表的联网设备数量飞速增长,使得人均网络接入带宽和流量也迅速提升。据相关机构预测,全球新产生数据年增40%,即信息总量每两年就可以翻番。
国金证券研报指出,今年将是大数据分析应用的落地年,特别是在企业级领域。百度、腾讯、阿里等大互联网公司针对自身的平台用户提供数据分析业务。国内金融、环保、交通、医疗等行业的数据分析应用也逐渐开始。
大数据技术日益为各行各业所倚重。在国内资本市场,许多上市公司也纷纷看中大数据这一新兴市场,争相投资布局。近期,中科云网、东方国信、朗玛信息等上市企业纷纷宣布进军大数据领域。
中国通信学会副理事长兼秘书长张新生表示,通过这几年的发展,大数据在国内已经从炒作期进入了积极探索和应用发展初期,初步形成了以数据采集、整合分析等技术为支撑的产业生态。
大数据对监控数据处理的价值
大数据在对安防数据处理价值上主要体现在以下几个方面:
一、数据应用效率不断提升。通过智能分析技术、大数据技术,能够使视频数据的应用效率不断提升,解决以往应用效率低下的问题。应用效率的提升能够使视频数据产生更大的价值。
二、数据深度应用。数据的深度应用能够体现大数据的真正价值,而这也更能提升安防系统的整体实力,使视频数据的边缘地位向核心地位靠拢,使安防行业的竞争力得到提升。
三、体制及标准的完善。标准和体制的完善能够进一步促进大数据的发展,而掌握标准的安防企业将会有更强大的话语权。
视频监控大数据处理仍然面临三大挑战
目前的视频系统大数据应用仍然面临三大技术挑战,可以概括为“存不下”、“找不到”、“看不清”三个方面。这三大挑战在一定程度上反映出当前视频大数据处理领域存在的主要问题,同时也对视频大数据处理技术提出了更高的要求。
1.“存不下”主要体现在视频压缩编解码性能的限制
随着数字视频应用产业链的快速发展,政府、学校、社区、民用以及网络终端所产生的海量视频向传统视频编码标准发出宣战。存储的视频数量不断加大就需要更大程度地提高编解码效率,提高视频压缩率,从而降低存储空间。网络化进程的加快也要求编码后的视频在快速、便捷传输的同时保证解码还原的视频质量。
视频压缩也制约着智能视频领域的发展。很多情况下我们要求降低解码后的视频损耗,比如多媒体视频认证领域,视频的无损还原是提高算法判断准确度的先决条件,只有控制在一个合理的损耗范围内,它才能提高视频篡改提示的准确度。因此随着视频的网络化、高清化、智能化时代的来临,领先新一代视频编码标准,超越新的技术框架和编码性能,才能在城市级视频应用领域中取得核心的主导地位。
2.“找不到”主要体现为智能视频监控领域中的算法检测识别准确率的问题
目前的视频监控方法只能在非常简单的环境下聚焦少量目标,检测、识别、跟踪性能还无法达到一个较高的水准,多数软件都存在场景、环境的限制,例如在简单、纯净的场景中,检测目标背景与前景差别较大时,检测结果较为准确;而在一些人流量密度大的复杂场景中,如地铁、车站、商场,监视成千上万个个体时,准确地识别、跟踪、检测则是一项非常艰巨的任务。
同时算法检测会受到光线、颜色、化妆、摄像机硬件误差及精密度等一系列的问题影响,因此在低端智能与真正的人工智能之间还存在一个较大的鸿沟,它需要计算机处理能力及处理速度的提升。我们需要的是一种接近人类,甚至高于人类的识别准确率,并且能够检测区分人群行为,预测潜在的群体灾难。这不仅仅在智能视频领域,而且从多领域的交叉融合角度,智能分析的研发与探索对机器人的发展也能够起到积极的推进作用。
3.“看不清”主要体现在高清监控摄像机的智能化处理上
以往大多数城市级安防监控摄像头录制的视频画面都较为模糊,刑侦破案分析的依据仅仅为模糊画面动作方向,甚至是模糊的像素点,对具体人物细节的描述不清晰导致刑侦难度加大,辅助公安机关研判的力度不强。在智能监控领域,传统的智能分析方法较多的是在CIF格式下进行算法处理,这样处理速度更易达到实时。当传统视频向高清视频转换过渡时需要多重处理策略相结合进行算法分析,这需要持续的研发革新。在从标清向高清的门槛跨越过程中,网络带宽的承载力、视频的显示、存储等问题也不断显现。
结语
2014年是大数据的“落地年”,意味着大数据这艘大船已经起航,未来它也一定可以乘风破浪,扬帆远航。而视频监控作为船上的一名“乘客”,也一定可以感受到大数据发展所带来的方便与智能,并与之携手共进,创造安防行业的美好未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29