京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据迎来“落地年” 视频监控大受裨益
作为时下最火热的IT行业词汇之一,大数据近年来成为各界关注的一大热点。一方面,网民数量不断增加;另一方面,以物联网和智能移动终端等为代表的联网设备数量飞速增长,使得人均网络接入带宽和流量也迅速提升。据相关机构预测,全球新产生数据年增40%,即信息总量每两年就可以翻番。
国金证券研报指出,今年将是大数据分析应用的落地年,特别是在企业级领域。百度、腾讯、阿里等大互联网公司针对自身的平台用户提供数据分析业务。国内金融、环保、交通、医疗等行业的数据分析应用也逐渐开始。
大数据技术日益为各行各业所倚重。在国内资本市场,许多上市公司也纷纷看中大数据这一新兴市场,争相投资布局。近期,中科云网、东方国信、朗玛信息等上市企业纷纷宣布进军大数据领域。
中国通信学会副理事长兼秘书长张新生表示,通过这几年的发展,大数据在国内已经从炒作期进入了积极探索和应用发展初期,初步形成了以数据采集、整合分析等技术为支撑的产业生态。
大数据对监控数据处理的价值
大数据在对安防数据处理价值上主要体现在以下几个方面:
一、数据应用效率不断提升。通过智能分析技术、大数据技术,能够使视频数据的应用效率不断提升,解决以往应用效率低下的问题。应用效率的提升能够使视频数据产生更大的价值。
二、数据深度应用。数据的深度应用能够体现大数据的真正价值,而这也更能提升安防系统的整体实力,使视频数据的边缘地位向核心地位靠拢,使安防行业的竞争力得到提升。
三、体制及标准的完善。标准和体制的完善能够进一步促进大数据的发展,而掌握标准的安防企业将会有更强大的话语权。
视频监控大数据处理仍然面临三大挑战
目前的视频系统大数据应用仍然面临三大技术挑战,可以概括为“存不下”、“找不到”、“看不清”三个方面。这三大挑战在一定程度上反映出当前视频大数据处理领域存在的主要问题,同时也对视频大数据处理技术提出了更高的要求。
1.“存不下”主要体现在视频压缩编解码性能的限制
随着数字视频应用产业链的快速发展,政府、学校、社区、民用以及网络终端所产生的海量视频向传统视频编码标准发出宣战。存储的视频数量不断加大就需要更大程度地提高编解码效率,提高视频压缩率,从而降低存储空间。网络化进程的加快也要求编码后的视频在快速、便捷传输的同时保证解码还原的视频质量。
视频压缩也制约着智能视频领域的发展。很多情况下我们要求降低解码后的视频损耗,比如多媒体视频认证领域,视频的无损还原是提高算法判断准确度的先决条件,只有控制在一个合理的损耗范围内,它才能提高视频篡改提示的准确度。因此随着视频的网络化、高清化、智能化时代的来临,领先新一代视频编码标准,超越新的技术框架和编码性能,才能在城市级视频应用领域中取得核心的主导地位。
2.“找不到”主要体现为智能视频监控领域中的算法检测识别准确率的问题
目前的视频监控方法只能在非常简单的环境下聚焦少量目标,检测、识别、跟踪性能还无法达到一个较高的水准,多数软件都存在场景、环境的限制,例如在简单、纯净的场景中,检测目标背景与前景差别较大时,检测结果较为准确;而在一些人流量密度大的复杂场景中,如地铁、车站、商场,监视成千上万个个体时,准确地识别、跟踪、检测则是一项非常艰巨的任务。
同时算法检测会受到光线、颜色、化妆、摄像机硬件误差及精密度等一系列的问题影响,因此在低端智能与真正的人工智能之间还存在一个较大的鸿沟,它需要计算机处理能力及处理速度的提升。我们需要的是一种接近人类,甚至高于人类的识别准确率,并且能够检测区分人群行为,预测潜在的群体灾难。这不仅仅在智能视频领域,而且从多领域的交叉融合角度,智能分析的研发与探索对机器人的发展也能够起到积极的推进作用。
3.“看不清”主要体现在高清监控摄像机的智能化处理上
以往大多数城市级安防监控摄像头录制的视频画面都较为模糊,刑侦破案分析的依据仅仅为模糊画面动作方向,甚至是模糊的像素点,对具体人物细节的描述不清晰导致刑侦难度加大,辅助公安机关研判的力度不强。在智能监控领域,传统的智能分析方法较多的是在CIF格式下进行算法处理,这样处理速度更易达到实时。当传统视频向高清视频转换过渡时需要多重处理策略相结合进行算法分析,这需要持续的研发革新。在从标清向高清的门槛跨越过程中,网络带宽的承载力、视频的显示、存储等问题也不断显现。
结语
2014年是大数据的“落地年”,意味着大数据这艘大船已经起航,未来它也一定可以乘风破浪,扬帆远航。而视频监控作为船上的一名“乘客”,也一定可以感受到大数据发展所带来的方便与智能,并与之携手共进,创造安防行业的美好未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26