京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据颠覆传统金融_数据分析师
2013年是互联网金融元年,互联网技术在金融业的应用犹如在银行主导的传统金融业的死水中投入一颗石子。互联网金融未来发展的一大趋势是大数据的应用,而这也改变了人们对金融本质的传统认识。此前学界广泛认为金融的本质是中介,还有人认为金融的本质是对风险的控制与管理,然而随着互联网金融的发展,已经有人开始对金融进行重新定义,金融就是大数据。
从融资模式看,现代金融有两种模式,一种是银行模式:存款、贷款、支付,一种是资本市场模式。资本市场模式就是直接融资,通过交易所进行股票交易。互联网金融既不走银行模式,也不走资本市场交易所模式,它有可能是所有的存款人和所有的借款人,通过互联网平台直接交易。未来通过互联网走直接金融的模式,不需要资本市场,也不需要银行。
从支付模式看,有移动支付和第三方支付。第三方支付在中国的典型是支付宝。我们现在的支付模式是银行支付模式:个人在商业银行开户,商业银行在中央银行开户,解决各家银行之间的跨行清算,而支付宝颠覆了这个模式。现在已经有一些公司给员工发工资直接打到支付宝,员工用支付宝支付,然后转账到别人的支付宝,这样的话,在银行体系之外构成了支付体系。微信5.0 支付也是这个模式。第三方支付未来完全有可能在银行支付系统之外创造一个新的支付系统。银行卡支付被手机支付替代;POS机刷卡被扫二维码替代。
所谓对传统金融的彻底颠覆,一个很重要的表现形式是大数据的征信和网络贷款:根据企业的行为数据计算出企业可能违约的概率,在这个基础上进行贷款(B2B是典型)。当前典型的是阿里小贷等。未来大数据的保险也是这样的:根据行为的数据进行保险差别的定价。比如未来的车险将根据个人生活、工作、习惯所有大数据的基础,给出事故发生的概率,然后给出保险的费率。这种模式完全颠覆了现在保险费率的模式。P2P网络贷款,也是互联网金融的模式。P2P网络贷款是债权,众筹融资就是解决股权问题。如通过众筹模式解决小额风险投资问题,美国已经规定这种模式是合法的。大数据在证券投资中的应用也将非常广泛。互联网金融,尤其是搜索引擎、云计算使人们收集了大量的数据,这些数据在证券投资当中将发挥很大的作 用,而且现在它对股价的预期非常有用。
从形式上讲,互联网对传统金融的彻底颠覆表现形式是大数据的应用,本质上是根据科斯定理,金融机构作为中介的价值或许会消失。假设整个金融市场互联网化,那么现在的银行机构、证券机构、保险机构的金融中介作用将会弱化甚至消失,取而代之的可能是基于大数据的直接金融交易。
假设整个金融市场互联网化,包括支付清算体系、金融产品金融工具、风险评估与定价、期限匹配数量匹配都互联网化,这样交易成本将极低,基于互联网技术的金融市场效率就非常高了。现在我们大量的金融市场的交易存在信息不对称,大量信息不对称引起交易成本非常高,也使得金融成为专业性很强的精英行业。然而未来金融神秘的面纱或许会揭开,普通百姓也可以很轻松进行现在看来很复杂的金融交易,就像现在下载一个APP应用一样下载使用金融产品。金融网点的消失可以使金融系统人力资本、营运资本大大降低。假设互联网支持了金融市场,完全互联网化的话,完全是供求方和需求方直接交易,交易成本会减少很多,这就是科斯定理。
互联网金融在2013年发轫,对金融的影响是颠覆性的,它将改变人们对金融传统的部分认识与观念。但是金融在未来将回归它的核心本质。未来变的不是金融的核心定义,而是现在的股权、债权、保险、信托等这些金融产品的契约形式,变的是金融监管的与时俱进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08