京公网安备 11010802034615号
经营许可证编号:京B2-20210330
金融创新为什么离不开大数据_数据分析师
大数据为何成为近几年的热词?大数据为何现在比任何时期都显得重要和被重视呢?主要原因是全球经济行为、生活方式、生存方式发生了深刻而快速的变化,这个变化派生出了可以挖掘、分析,可以从中整理整合出一系列行为轨迹包括商业机会的大数据。这个“深刻而快速的变化”是什么呢?即:作为社会主体的人类的所有行为行动特别是商业、生活、生存方式等几乎涵盖所有领域都正在快速往网络上转移和搬家,特别是正在呈现出几何增长转移到移动互联网上。
过去以线下为主的人类一切活动是分散的、无轨迹可循、难以把握的。通过耗费人力物力跟踪调查了解,又是被动的,往往时效性、准确性等非常之差。而现在互联网线上的一切活动几乎都是有迹可循、可主动抓取获得、有轨迹可追,而且是瞬间可以准确抓到,及时可以分析挖掘的。
从这些主动或者说当事人不知不觉中抓取的法人、自然人在网路上留下的踪迹轨迹行为,进行深刻分析,从中可利用的价值非常之大。俗话说,思想支配行动,行动是思想的反映。这其中商用价值最大,这也是把大数据称为21世纪一座大金矿的原因。
随着社会主体行为行动快速向网络特别是移动互联网上转移,大数据越来越丰富,越来越完善,这座金矿将越来越大,就看谁能够从这个巨大金矿中攫取一部分财富。
新浪财经发布业内首个大数据战略其方向性无疑是完全正确和对路的。15年来,新浪财经围绕新闻产业链积累了海量的大数据,这些大数据此前被浪费了,现在开始挖掘整理分析,从中挖出金矿也并不迟。
新浪财经大数据战略,是以新浪财经累积的资讯、用户、行为数据为驱动,通过重点产品不断沉淀新数据,再将数据应用于金融产品创新、业务创新,及合作创新,形成数据生态,目标建成开放,共享的财经领域首选互联网数据平台。
从发布会情况看,新浪财经大数据眼前的实际应用偏重于资本市场、A股市场的交易和操作,偏重于交易产生的数据,金融机构可以挖掘高手、发现策略,开发创新性金融产品。就是新浪财经所说的“伯乐相马”使“人人都是基金经理”成为可能,草根距离“高大上”的投资经理不再遥不可及。
同时,已打造财经数据平台、模拟交易、理财师等重量级产品服务。以这个为重点线路是大数据发挥作用之一,肯定能够给普通百姓带来现实的利益。
笔者认为,金融的本质在于信用,金融管理的关键在于风险。而防范金融风险的重点在于识别信用。改革开放以来,金融改革整体来说滞后于经济体制改革,而其中存在的最大问题是对信用的巨大浪费。
正是金融机构将所有交易对手都假想为不讲信用的,因此,所有金融特别是贷款等金融资产业务发展都需要担保抵押质押,在一切金融活动中几乎没有了“信用”,直接导致交易成本上升、交易效率低下、金融资源配置严重不公,中小微企业出现了长达20年的贷款难融资难,对整个国民经济造成巨大损失。
也不能怪罪金融机构,因为其没有能力鉴别、识别金融交易对手的信用状况。只能采取“宁可错杀一万也不可放过一个”的做法。
互联网大数据的诞生在金融应用上一个最伟大创新就是能够通过对金融交易对手在网路上行为留下的大数据踪迹足迹进行深度快速挖掘,从而识别其信用记录状况。有了“信用”,何惧金融风险?
新浪财经拥有海量大数据,应该将其大数据背后客户百姓积累的信用财富充分挖掘出来,给每一个新浪财经线上客户进行有说服力的大数据信用背书,实现新浪财经客户有信走遍天下的大目标。把新浪财经打造成为客户信用大数据提供商,不失为一个明智选择,也是一个非常有前途潜力的行业。
目前,传统金融机构包括银行苦于没有网路大数据,眼睁睁看着就要落伍。个别银行比如建行开始打造自己的网络平台—善融商务,但是,由于起步太晚、效果并不好。传统金融机构的出路在于与互联网企业合作,新浪财经积累的大数据是最佳合作对象。只要找准传统金融机构与新浪财经大数据合作的切入点,使得新浪财经成为大数据信用的提供商,金融机构是新浪财经大数据的使用者,二者合作必将能够起到1+1大于2的双赢结果。
同时,新浪财经应该强力开发和介入移动互联网领域,尽快打造自己的移动互联网客户端,在移动互联网扑面而来之际,绝不能落伍,否则将会失去移动互联网上的大数据金矿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26