京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的未来–个人信息/情报/认知服务的思考
1.未来大数据的一切都都关于人
不论述
2.大数据收集困难和高风险
现在的大数据的来源,都是通过自有平台收集用户数据的,对于没有平台的企业很难有机制和渠道获取稳定的数据来源。
有说通过法律和制度来,规范关于人的大数据使用,在这之前,唯一可行的方向是,把用户大数据使用,做成服务的必选功能,要使用服务,必须接受隐私风险。
3.对大数据的利用方式
现在的大数据 都是由各种数据聚合出一类关于人的结论 然后拿给企业使用。
我想大数据应用还有另一类。
利用网上的大数据,告诉某类人、甚至某个人,世界发生着什么,未来要发生什么。
4.科幻大片
如果从网上下载一个专属的虚拟人物(虚拟机器人/虚拟助理/终生人工智能伴侣)到手机。
刚开始这个角色需要你教导(配置,类似早期的语音识别控制的学习阶段)才能帮你在互联网上你做一些简单的事情。
随着你教导的更多更好(对你的习惯,兴趣爱好,思维模式,接收度等信息的收集) 和基于大数据的挖掘和分析能力的增加,它的智力越来越高,能做一些更复杂的任务(作为入口,代表你在互联网活动)。
直到很多年后,它的智力超过你,它能告诉你,世界发生着什么,未来要发生什么,它了解你的年龄,了解的行为习惯,了解你的经济能力,了解你缺点,时刻为你服务,扩展你的人生,使你的人生不局限于经验(网上有),思维(网上有),能更好的生活下去(帮你发现机会)。
类似的东西,后来才发现微软小冰二代已经在着手做了,可能愿景和目的不一样,但轮廓有了。
5.认知需求
我们成长的时候,家长常常说你懂点事吧,但如何懂事没有人能教给我们,也没有告诉我们如何去做(去阅读书籍,去体验生活,经历人生);
我们毕业了,工作了,在社会上依然遇到,各种成功学大师,各种领域专家,各种百家讲坛老师,各种转世神棍,大行其道;
这一切都是因为,人有认知的需求。
6.认知培训
基于这个需求,认知服务即使做不到自动,就算做人工服务,也能在现在的教育市场(学校,兴趣培训,英语培训,等技能培训)杀出一条出路。
7.认知模式与三分的认知世界
莱考夫(George Lakoff)在 [女人、火和危险的事物]([Women fire and dangerous things])一书中,认为理念化的认知模式(idealized cognitive models 简称ICMs)是结构复杂的感知整体,是对世界的整体表征,它的价值在于对输入信息进行重组。ICMs并不客观存在的,而是人类实践和经验的高度概括和总 结,并且可以为以后的实践提供参考。根据lakoff的论述,IMCs有四种:命题模式,意向图式模式,隐喻模式和转喻模式,它们的关系如下:
命题模式是出发点和归宿,意象图式模式是基础,转喻模式和隐喻模式是建立在命题模式和意象图式模式上的认知事物的过程和方式,并且二者相互作用。
任一认知主体的认知世界整体可以划分为三个部分:信念世界、怀疑世界和无知世界。我们用Wb表示信念世界,Wd表示怀疑世界,Wu表示 无知世界。Wb、Wd、Wu是三个命题集合,他们的元素是相应的认知命题。简单地说,信念世界是由认知主体相信的命题构成,这些命题构成认知主体的信念; 怀疑世界里的所有命题是认知世界说怀疑的,认知主体认为这些命题是假的或不可能的,这些命题可称为疑点;认知主体从来没有考虑过的命题构 成无知世界的内容,这些命题(以及它们的负命题)或者仍没有进入认知主体的视野之中,或者虽然进入了认知主体的视野之中但认知主体不知道其意义,此时,认 知主体对之既不相信又不怀疑,这些命题可称之为盲点。
8.认知互联网世界进而认知现实世界
互联网世界一直是互联网世界的映射,越来越多的现实世界事物在互联网世界建立了数字化的映射"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23