
大数据的未来–个人信息/情报/认知服务的思考
1.未来大数据的一切都都关于人
不论述
2.大数据收集困难和高风险
现在的大数据的来源,都是通过自有平台收集用户数据的,对于没有平台的企业很难有机制和渠道获取稳定的数据来源。
有说通过法律和制度来,规范关于人的大数据使用,在这之前,唯一可行的方向是,把用户大数据使用,做成服务的必选功能,要使用服务,必须接受隐私风险。
3.对大数据的利用方式
现在的大数据 都是由各种数据聚合出一类关于人的结论 然后拿给企业使用。
我想大数据应用还有另一类。
利用网上的大数据,告诉某类人、甚至某个人,世界发生着什么,未来要发生什么。
4.科幻大片
如果从网上下载一个专属的虚拟人物(虚拟机器人/虚拟助理/终生人工智能伴侣)到手机。
刚开始这个角色需要你教导(配置,类似早期的语音识别控制的学习阶段)才能帮你在互联网上你做一些简单的事情。
随着你教导的更多更好(对你的习惯,兴趣爱好,思维模式,接收度等信息的收集) 和基于大数据的挖掘和分析能力的增加,它的智力越来越高,能做一些更复杂的任务(作为入口,代表你在互联网活动)。
直到很多年后,它的智力超过你,它能告诉你,世界发生着什么,未来要发生什么,它了解你的年龄,了解的行为习惯,了解你的经济能力,了解你缺点,时刻为你服务,扩展你的人生,使你的人生不局限于经验(网上有),思维(网上有),能更好的生活下去(帮你发现机会)。
类似的东西,后来才发现微软小冰二代已经在着手做了,可能愿景和目的不一样,但轮廓有了。
5.认知需求
我们成长的时候,家长常常说你懂点事吧,但如何懂事没有人能教给我们,也没有告诉我们如何去做(去阅读书籍,去体验生活,经历人生);
我们毕业了,工作了,在社会上依然遇到,各种成功学大师,各种领域专家,各种百家讲坛老师,各种转世神棍,大行其道;
这一切都是因为,人有认知的需求。
6.认知培训
基于这个需求,认知服务即使做不到自动,就算做人工服务,也能在现在的教育市场(学校,兴趣培训,英语培训,等技能培训)杀出一条出路。
7.认知模式与三分的认知世界
莱考夫(George Lakoff)在 [女人、火和危险的事物]([Women fire and dangerous things])一书中,认为理念化的认知模式(idealized cognitive models 简称ICMs)是结构复杂的感知整体,是对世界的整体表征,它的价值在于对输入信息进行重组。ICMs并不客观存在的,而是人类实践和经验的高度概括和总 结,并且可以为以后的实践提供参考。根据lakoff的论述,IMCs有四种:命题模式,意向图式模式,隐喻模式和转喻模式,它们的关系如下:
命题模式是出发点和归宿,意象图式模式是基础,转喻模式和隐喻模式是建立在命题模式和意象图式模式上的认知事物的过程和方式,并且二者相互作用。
任一认知主体的认知世界整体可以划分为三个部分:信念世界、怀疑世界和无知世界。我们用Wb表示信念世界,Wd表示怀疑世界,Wu表示 无知世界。Wb、Wd、Wu是三个命题集合,他们的元素是相应的认知命题。简单地说,信念世界是由认知主体相信的命题构成,这些命题构成认知主体的信念; 怀疑世界里的所有命题是认知世界说怀疑的,认知主体认为这些命题是假的或不可能的,这些命题可称为疑点;认知主体从来没有考虑过的命题构 成无知世界的内容,这些命题(以及它们的负命题)或者仍没有进入认知主体的视野之中,或者虽然进入了认知主体的视野之中但认知主体不知道其意义,此时,认 知主体对之既不相信又不怀疑,这些命题可称之为盲点。
8.认知互联网世界进而认知现实世界
互联网世界一直是互联网世界的映射,越来越多的现实世界事物在互联网世界建立了数字化的映射"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29