京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2014年大数据没迈过去的槛儿_数据分析师
刚刚过去的2014年,见证了大数据架构发展和部署上的进步。NoSQL数据库得到越来越多的用户认可,Hadoop 2 也突破了分布式处理框架一开始批处理的角色,走向了运营分析。
Hadoop 2 平台最早发布于2013年末,今年主要发布对Hadoop 2的各种修补,主要围绕HDFS和YARN(详见《2014年Hadoop大事件盘点报告》)新版本将HDFS从早期批处理的MapReduce编程模型和处理引擎中解放出来,为Hadoop打开了新的天地,比如交互查询和流处理应用程序。但从概念证明(proof of concept,POC)到投入生产是一个质的变化,2015年将见证Hadoop更多的发展。
数据架构师和管理者今年花了很多精力研究主流关系型数据库的内存处理技术。同时,非关系型数据库的讨论也很多,纽约咨询公司Caserta Concepts的创始人兼总裁Joe Caserta认为:“如果你觉得你可以不需要庞大的SQL数据库就可以完成一些任务,那么新兴技术就算是取得了胜利。”
除了格外吸睛的hadoop之外,另一个引人关注的开源产品是分析处理引擎Spark,Spark经常和Hadoop 2搭载使用,在处理批任务时比MapReduce更快。Spark另一个关注点在于机器学习,这也是过去一年里大家常说的话题。
MongoDB, Couchbase, Aerospike等一长串的NoSQL数据库在过去的一年里持续发声,恐怕没有哪一天是不说NoSQL的。在2014 MongoDB世界大会上,CitiData的全球总裁Michael Simone就讽刺了NOSQL数据库的过度宣传。不过这并不能阻挡NoSQL的发展势头,因为它确实擅长处理大规模数据集,尤其是网络上多种格式的非结构化数据。
举例来说,NoSQL数据库经常被贴上内存标签,支持实时决策,还可以帮助呼叫中心人员跟踪用户网络行为,解决技术难题,以及存储并分析社交媒体信息。
在回顾NoSQL数据库的时候,我们不要忘了NewSQL技术,它致力于兼取SQL和NoSQL平台之长。
数据架构是大数据的核心命题
这些技术的发展都离不开一个核心命题,即融入到企业数据架构。Accenture分析咨询集团负责数据供应链的信息管理总监Vince Dell’Anno表示:“大数据今天面临的主要问题是架构问题,即企业如何把这些新的技术集成到一个环境中。”
Dell’Anno表示,很多IT部门面临的挑战是他们要允许成百上千的终端用户访问新产生的数据,如何管理成了问题。事实上,构建可扩展的大数据系统、将其余现有数据仓库、分析和运营环境集成是2014年技术发展的主题。很多时候,为了应用新工具,大数据架构师不得不放弃熟悉的数据模式,遵循新的数据管理方法。
就在2014年行将结束的时候,hadoop发行版供应商Hortonworks申请IPO上市,这个过程中,它筹资一亿美元,Ovum分析师Tony Baer在博客中写道,此举对于商业前景的意义更大,这是一个新兴的市场,几乎所有的销售的新产生的,竞争对手也相对较少。并且,这一领域还是有很多有待开垦的市场的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16