京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在寒冷的天气里 谈谈大数据如何提高天气预报的准确性
天气预报是大数据应用最早的领域之一, 古人们总结出的节气和天气谚语沿用了几个世纪。
如何预测天气
前650年左右巴比伦人使用云的样子来预测天气。中国人至少在前300年左右有进行天气预报的纪录。古时靠观察总结出天气现象和天气谚语来指导人们的生活,只是泛泛,却也足以。
17世纪开始科学家开始使用科学仪器(比如气压表)来测量天气状态,并使用这些数据来做天气预报。但很长时间里人们只能使用当地的气象数据来做天气预报,因为当时人们无法快速地将数据传递到远处。1837年电报被发明后人们才能够使用大面积的气象数据来做天气预报。
今天的天气预报主要是使用收集大量的数据(气温、湿度、风向和风速、气压等等),结合有关气象资料、地形和季节特点、经验等综合因素来研究确定未来的天气情况。由于大气过程的混乱以及今天科学并没有最终透彻地了解大气过程,因此天气预报总是有一定误差的。
目前,我国一般降水的预报准确率在80%左右,暴雨24小时预报的准确率大概是19%至20%,在相同算法下,美国的暴雨预报准确率是22%。
但是如果数据够多、建立的数学模型够精确,是可以接近自然的真实情况的。
气象数据量不断翻番
上世纪90年代及之前,中国气象资料大部分局限于地面及高空观测。当时,2000多个地面站以小时为单位收集气象信息;120多个高空站每天观测最多不超过4次。从数据量上看不算太多,即便考虑到卫星和雷达资料,其总体日增量也局限在GB量级。
现在,地面观测站大约有4万个,每10分钟观测一次,未来还将加密至分钟级;在空间密度上,至少增加20倍,频度将增加60倍,地面及高空观测信息总量增加了1200倍。
而这些只占整个气象数据的30%,雷达、卫星以及数值预报数据占到了70%。目前,气象部门需要永久保存的数据目前约有4PB~5PB,年增量约1PB。每年的气象数据已接近PB量级(1000GB=1TB,1000TB=1PB)。
这也正是大数据规律的体现,观测信息量越大,所蕴藏的真实信息越多,就更能做好预报。
气象服务盘活数据
海量气象数据怎么用?这是大数据时代亟待考虑的问题。就现有情况看,数据在气象预报、气候预测诊断方面运用得比较充分;而在气象服务领域,大量实况观测数据往往被搁置。
目前的实况数据气象服务主要基于单要素单一站点的形式。这意味着,人们收到的气象服务只是周边气象站点的天气情况,并且总有延迟。
为此,科研人员正在引进国际先进的空间数据融合数值模式方法,即将周边几个站点的数据以及其他传感器所获得的数据融合进模式中,反演出整个区域的天气情况。从试验结果看,运算速度达到分钟级,小区域可达到秒级。
“这些工作都是在大数据的基础上才能够进行,无论模式如何先进,没有海量的数据进入,都不能达到很好的效果。”中国气象局公共气象服务中心高级工程师唐千红说。
让科研人员欣喜的是,在大数据时代,数据并非单纯指人们在互联网上发布的信息。全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、温度、湿度乃至空气中化学物质的变化。可以设想,这些信息都可以被气象部门所用。
EarthRisk是一家利用大数据对未来天气情况作出预报的技术公司,它采用的预测模型项源自加州大学斯克利普斯海洋研究所。
该模型不同于以往的数值预报模式,可基于 820 亿次计算以及 60 年的气象历史数据来识别天气模式,然后将这些模式与当前的气候条件进行比较,再运用预测性分析进行天气预测,其预测时间更长、预测准度更高,最长可提前 40 天生成冷热天气概率,而传统主观预测的模型一星期以上的准度就不行了。
大数据时代下的气象服务是什么样子?唐千红认为,在看得见的未来,融入了地理信息、社会经济数据的气象服务,能够让人们知道任意时间地点可能会发生什么,例如这阵风是否会吹翻门口的广告牌,前面一个高速路口是不是在下雨、会不会发生山洪。
天气预报的未来
毫无疑问,虽然现在吐槽再多,气象部门还是一直在努力完善工作的。建设更多的观测站,运用更加先进的计算设备、培养数据人才建立更完善的天气预报模型,同时也离不开经验丰富的预报人员,天气预报、乃至是灾难预报都能更加准确。
以后天气预报的趋势,是朝精细化,精准化发展。同时在这个过程中消耗的大量人力物力可以通过数据的共享和同其他行业的交叉应用来弥补,这方面,大数据的预测意义才越发显得重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23