京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从Teradata第四季度财报电话会议上,你已经看到这家公司与其他数据仓库公司的竞争远不如Hadoop那么大。
Teradata首席执行官Mike Koehler以及首席财务官Steve Scheppmann在公司财报电话会议上不断谈论Hadoop。是Hadoop抢走了Teradata的生意吗?收入受到了怎样的影响?Teradata是否可以与Hadoop并存?
Teradata第四季度比预期稍好,前景较为保守。Teradata的统一架构融入Hadoop开源平台用于分析大数据,但是一些ETL(提取、转换以及加载)负载正在远离Teradata。
根据Teradata的报告,第四季度收益1.12亿美元(或者每股68美分),收入7.69亿美元,同比增长4%。第四季度Teradata的非GAAP收益为每股88美分。华尔街之前预期该季度Teradata的收益为每股85美分。因此收入与预期持平,收益好于预期。在经过艰难的第三季度之后,Teradata在该季度的结果可以算是一个胜利。
就前景看,Teradata表示2014年收入增幅预计在3%到7%之间,非GAAP收益在每股2.85美元到每股3美元之间。这一结果低于华尔街预期的每股3.04美元。
尚不明确的是,Teradata的业务是否受到Hadoop的影响,以及影响程度有多大。Teradata将Hadoop结合到自己的架构中,并将其与自己的Aster平台相融合。
Teradata的计划是将Hadoop与自己的数据仓库设备融合。这一计划是有道理的,因为大多数大型客户在可预见的未来内都会采取一种混合的方法。但是像一家从许可和支持转向围绕云和订购的软件公司,这样的过渡必须拿捏好。
Koehler表示:我们在美洲的前50大客户中有接近1/3已经在生产中采用Hadoop,其他2/3正处于各种评估的阶段。那些在生产中部署Hadoop的客户在Teradata数据仓库上的支出模式与没有采用Hadoop的客户是类似的。我们正在与这些客户紧密合作,其中有半数的客户已经采用了我们的Unified Data Architecture统一数据架构。实施了我们UDA的客户总数翻了三番,我们有多个理念正在验证中。除此之外,我们的2013 Aster和Hadoop相关收入已经接近于2012年的四倍。我们将拥抱Hadoop并将它作为UDA的关键组成部分,因为我们相信,大数据和Hadoop对我们的客户和我们自己来说都是一个福音。
在随后的评论中,Koehler补充说,在大多数情况下,客户们已经在生产中部署了Hadoop,正如我们在最近的财报电话会议上所说。他们的做法是围绕着ETL和将部分ETL工作负载从Teradata EDW上迁移出来,我们认同这个这一点,这也是我们在最近的财报电话会议上说过的。因此,客户这样做所带来可量化的影响相对较小。现在,如果你以未来的眼光看Hadoop的影响,我倾向于我们在上次会议所说的。也就是,基本上我们对大型客户做了全面的分析,我们看到他们平均20%到40%的工作负载已经完成——用于ETL。这些工作负载中20%到40%正在使用ETL,我们认为20%适合于使用Hadoop。因此展望未来,我们将看到越来越多的工作负载因为与ETL相关而被迁移,我们认为这是最大的影响。
也许对于Teradata来说,更大的风险是他们最大的客户的资本开支并没有增加。这个事实意味着越来越多的客户会考虑Hadoop,因为随着开源项目的不断发展,未来Hadoop将能够处理更高的工作负载。如果企业认定了他们可以在没有大数据仓库和集成设备的情况下掌控大数据和分析,那么Teradata面临的问题可就不止是Hadoop了。一些分析师认为,企业已经开始重新考虑他们的数据仓库战略了。
Cowen分析师Peter Goldmacher指出:Teradata说,2013年最大的难题是Teradata无法让他们的前50大客户花钱。这个趋势主要是因为开支放缓所导致,我们的分析认为,这种公司会是最积极采用Hadoop的群体。我们认为,Teradata的全年业绩显示了那些购买Teradata产品的客户对于Teradata利润较低的中端、低端以及更低成本的产品更感兴趣。我们还看到Cloudera更新了他们推向市场的战略,Cloudera是一家出现在Teradata关注视野中的Hadoop初创公司,他们将自己的产品定位为Teradata的替代解决方案,成本只是Teradata的很小一部分。随着时间的推移,随着Hadoop的功能性和可用性显著改善,我们看到来自Cloudera以及其他Hadoop分销商的威胁加大,很快在未来今年的某个时间点,Teradata将不再具备任何技术竞争优势。我们看到一些早期迹象,企业正在重新考虑他们的整体数据管理架构,在这个新模式中给传统厂商留下的空间非常小。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23