
我觉得从事数据挖掘工作,尤其是在互联网行业,主要需要三个方面的能力,即机器学习和数据挖掘的理论知识、编程开发与数据结构算法的基础和业务理解与沟通表达的能力。
上面的图里列出了这个行业不同类型的从业者机器特点。
A. 主要是负责做最顶尖机器学习相关学术研究。比如发明一些新的算法,想早期的SVM,LDA最近的一些deeplearning模型。但是处在塔尖的的他们对于这些算法在业务场景的应用或者算法的实现兴趣并不大,主要精力都花在了理论研究上,比如证明个bounds什么的。写出来的东西大部分发表在NIPS或者ICML上,一般人也看不懂。他们主要存在于一些研究机构中,如国外高校或者企业研究院。一般企业如果需要这样的人,也是挖过来当震厂之宝吉祥物,不属于我们讨论的范围。
B. 他们既对算法有比较深入的了解,又有高超的编程技术。他们的数学可能达不到炉火纯青的地步,他们的兴趣也不在于各种繁琐的理论推导。他们对已有算法进行改进,并且给出最好的实现,造福广大人民群众,比如libsvm,svdfeature,paramater server这样的工具。当然,这样的人才也是可遇不可求,而且他们也需要一个比较大的平台来施展自己的能力。他们的工作应该能够成为一个企业数据挖掘的大杀器。
C.他们对算法有一定的了解,但是不够深入。他们开发的经验有限,对于数据挖掘的应用了解也不够深入。比如很多理论方向的研究生博士生可能就处于这个状态,即使能够发表一些看起来不错的文章,但离真正做出好的实际的数据挖掘工作还有很长的一段距离,需要一步一个脚印的踏实前进。
D.他们是算法界的大神,码农中的翘楚,横扫各路ACM ICPC比赛的英雄。因为各种机缘巧合,他们没有选择数据挖掘作为自己以后的方向。虽然他们对于机器学习理论和数据挖掘的应用场景不是很了解,但凭借他们的天赋,假以时日,也一定能在这个行业有所作为。不过,其他领域也需要他们,也有他们大展拳脚的空间。
E.他们属于一般的码农,能写的一手好代码。但是对机器学习知之甚少,而且如果思维不够灵活,可能也会在业务的理解上有一些障碍。另外,沟通交流的能力通常也是码农们所欠缺的。对于应届生,如果确实有这个天赋,不妨一试;对于工作多年的码农想转行,也需要付出比较大的努力。
F.他们的工作贴近业务,对数据也有一定敏感性,可能是excel和sql的高手。但是这和数据挖掘的工作还有一定差别。最适合他们的岗位可能是BI或者数据产品经理。在这些岗位上,他们同样可以发光发热,做出卓越的贡献。
G.他们有一定的算法基础,同时对数据挖掘的业务落地也有丰富的经验。他们的瓶颈主要在于编程开发能力,这在大数据的场景下尤为明显。毕竟最好的方式是自己想idea,自己实现,至少实现一个原型。那么R或者python是一个这种的选择。没有coding,再好的算法也出不来。
H.对机器学习算法有一定的了解,熟悉各种业务,也有一定的开发能力。在数据挖掘的具体工作中,可以从业务出发,设计算法,也能对算法进行基本的实现。实际上这样的工程师还是很多的,特别是有一定工作经验的。他们的工作经验会对数据挖掘的工作起到很大的帮助。他们在算法以及编程的上的能力可能不是很高,但是足以丰富他们的思维方式,也方便与人沟通。
I.对机器学习算法有一定了解,也有较强的开发能力。适合做偏向开发的数据挖掘岗位。他们和I类的工程师密切配合,应该能有比较好的产出。他们很可能是学校的应届毕业生,学习了一些理论知识,也锻炼了开发的能力,但还缺乏实际的工作经验。互联网的数据挖掘岗位正是他们大展拳脚的好地方。
J.看起来是最好的,各项技能都很全面,也很适合做leader。但是这样的人毕竟可遇不可求。另外,每一项都好其实也就是每一项都不好,人的精力总是有限的。我觉得在一到两个方面做的比较突出,同时另外的方面也不要太弱以至于成为短板,这样就挺好的了。
根据上面说的,招聘主要根据H和I两类模版挑选人才。觉得考察的话,除了基本的开发算法,还有以下几个:
1.机器学习算法的理解,比如常见的算法的基本思想原理、应用场景、特点和求解方法。可以从两个分支考察,一个是使用经验,比如实际的一些参数设置啊,使用技巧什么的,面向H类。还有就是一些算法的实现方法,面向I类。
2.实际的项目经验,特别是数据挖掘工作。一方面考察他之前的工作情况,另外也看他的归纳总结能力与解决问题的能力。针对项目的一些细节提问,也可以看出他的做事方式和对一些知识的掌握情况。
3.对于业务的理解能力和敏感性,可以结合实际工作中的一些问题来考察。即使没有实际工作经验,也是可以看出他们在这个方面的潜力。同时也考察出理论和实际结合的能力。
4.沟通表达能力。相对于程序员,数据挖掘岗位对这个能力的要求高出不少。在整个面试的过程中,其实都有对这个能力的考察。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01