
大数据全交换音视频技术应用_AVM交互式管理平台解决方案_数据分析师
现代多媒体会议系统,经过几十年的发展,技术出现越来越多的瓶劲,然而市场对于系统功能的需求是无止境的,用户市场又提出了新的要求。近几年,随着云计算技术和万兆千兆网络交换的发展,会议系统行业已进入到了大数据网络交互及处理的时代,因此广州埃威姆公司创新的基于大数据的全交换音视频技术平台正是应对挑战的解决方案之一。
1 网络化
网络在出现之初就被预言将会改变人类的生活,如今确实做到了。网络使我们的生活变的更加便捷,使我们获取数据信息更加容易,使人和人之间的关系也更加紧密。AVM交互式管理平台是一个基于网络的系统,可以拥有一切网络所带来的优势:没有时间距离的限制,通过网络可形成“大会议”的共享平台;可以接入第三方移动平台;通过流媒体的介入,随时互联互通;对于各种多媒体的交互;海量的大数据资料处理,为智能、简单化的音视频平台提供支持。
2 大数据
大数据这个继云计算之后最热门的技术,指的是所涉及的资料量规模巨大到很难在短时间内达到撷取、管理、处理,并整理成为帮助用户决策更积极目的的资讯。大数据时代一切都可以通过海量的数据进行推演和预测,数据给了用户及系统管理的理论依据。AVM系统也融入了大数据处理的思路,对接入多媒体音视频数据的交互和管理,同时提供了多种方便的查询系统以及推送系统,通过强大的处理机制,在海量的数据中准确的取得用户所需要的内容。
3 关键技术
人工智能是探索研究使各种机器模拟人的某些思维过程和智能行为,人工智能主要是在体现在管理应用层上面,人工智能包括语音识别、图像识别或者人员识别。数据挖掘是从大量的数据库中模糊的及随机的实际应用数据中,挖掘出隐含的、未知的、对决策有潜在价值的数据的过程。数据挖掘主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析数据,做出归纳性的管理。
云计算是继个人计算机变革、互联网变革之后,第三次IT浪潮,将带来生活、生产方式和商业模式的根本性改变,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机和其它设备,基于网络的相关服务地增加、使用和协作模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
AVM系统构建于这样一个云计算的大数据交互的网络系统中,提供了流媒体显示功能。简单来说,AVM将接入网络的所有视频数据进行云数据交互处理,使其成为整个云资源的一个组成部分,任何接入云的用户都可以将这一资源纳入囊中,共享所有资源,只需要一个接入的PC或移动终端,就可以查看所有的资源,这就是云显示的最大魅力。
4 大数据时代的音视频交互
基于大数据的交互技术从体系架构上的变化,音频和视频以及控制全部基于网络的架构模式,全高清、高清、标清视频信号和高保真音频信号统一进入到网络,通过局域网络无损传输,通过应用层管理和调配数据的交互信息。系统结构简单明了,抛弃了采用低速率通讯的架构模式。基于大数据交互处理的架构分为三层,分别为智能管理应用层,数据交换层和接口层;三个层面分别负责不同的工作任务,接口层负责与前端和终端设备的连接,起到协议转换的功能;数据交换层对音视频信号进行无损的传输,根据需要调用及切换;智能化管理应用层控制所有的输入和输出及网络控制节点,如音频的处理、智能化控制、多媒体信息的路由、音视频数据的传输和存储播放等;采用人性化动态3D立体的界面,通过有线或无线触控终端管理,可提供集中流媒体的存储,数据库状态服务等处理。其次,基于数据库管理的设计对以后系统的日常管理及维护都可重新分析系统的现状,进一步提升了我们对系统稳定性的设计。三是带来距离的改变。基于大数据的的音视频交互方式,突破了传统音视频上距离的限制,近距离可通过局域网无损传输,远距离可通过光纤;不在受距离的限制,应用于多房间联合共享多媒体信息,包括存储和实时动态的信息多点共享显得非常的简单、快速。
大数据交互解决方案带来设备数量的改变。随着大数据交互技术的加入,基本的设备变成了输入输出和控制节点与交换机之间的关系,用一套简单明了的设备代替了复杂繁多的传统模拟设备,避免了重复复制主机的模式,降低了故障点和成本,保证了系统的完整性。在升级扩展方面,系统平台软件化,系统升级,设备基于网络,只要增加接口类设备,软件应用模块就可以完成功能的升级。如原来的切换矩阵是固定通道的,现在需要扩展就需重新更换主机,而现在只需要增加输入和输出的节点即可。在信号交互共享的改变,多房间音视频互联互通,冗余备份,通过数据交换层,通过授权可方便快捷的把本地的音视频信号共享到其它房间,只需通过软件直接就可控制;如在一些酒店可分割的宴会厅,通过交互式的管理方式,能够快速直观的切换分割和联合模式,无需手动频繁跳线链接。
例如使用埃威姆公司的美国百威(Peavey)媒体矩阵MixMinus,采用网络数据交换及处理的百威(Peavey)媒体矩阵NION系列设备为我们提供了MixMinus话筒管理技术的设计。该设计包括声场均匀度、GainUnity以及MixMinus技术。GainUnity电平统调是控制放大增益回馈最直接和准确的办法,声学频点处理是辅助。MixMinus能显著改善扬声器与高灵敏话筒近距离拾音引起的房间增益不足。另外在保密会议中我们可通过物理上断开机房的监听音箱和视频的图像,物联网应用管理层提供电平表和各个设备状态的显示,通过软件平台的电平表可直观的掌握音量的大小,无需现场管理或机房监听,保密性强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30