
大数据环境下的综合布线技术探析(1)_数据分析师
随着移动互联网技术的不断发展,移动互联网用户发送和上传的数据量达到1.3exa bytes,相当于10的18方。Big Data“大数据”是继云计算、物联网之后TI 产业又一次颠覆性的技术变革。当今信息时代所产生的数据量已经大到无法用传统的工具进行采集、存储、管理与分析。全球产生的数据量, 仅在2011就达到1ZB,且根据预测,未来十年全球数据存储量将增长50倍。大数据不是云计算, 是云计算的灵魂和升级方向。
1 大数据时代网络挑战
全世界联网主机数中轴标是上升趋势,2007年全世界人均只有0.1个设备是联到网上的,到2013年人均7个。到2016年将每3分钟传送360万小时视频, 相当于全球已生产的全部电影。2010年在全球互联网流量中,美国是6337 PB/月,占全球31% ,中国占全球63%。1998年一个网民一个月消耗1兆流量,2003年数字到10兆,2008年一个月到l G的流量,到2014年一个网民一个月可能要到10G。
另外,物联网在越来越多的行业中得到了应用,“万物互联”是物联网的终极目标。这部分是数据流量绝对增长量。物联网的时代将是传感器自动不间断地巨传大量数据并通过网络存储在数据中心内,对网络与数据中心的存储量起到了推动型作用。
大数据与网络基础设施的发展是相互影响、制约或促进的,所有数据量的上升需要更大规模的数据中心与其相适应,布线系统作为数据中心内部连接与管理的基础设施是所有数据流通的基础,对于数据中心运行对大数据流的支持起了关键作用。布线系统作为搭建数据中心的基础物理平台之一。
2 标准化发展应对大数据
根据2012版本的《数据中心电信基础设施标准》TIA 942A对于虚拟化的网络架构基本没有涉及。基于当前网络技术日新月异的变化状况,云计算虚拟化的网络发展将是大型数据中心网格架构的重要发展趋势,采用无阻塞的交换矩阵的网络结构是从网络层面应对大数据时代的技术手段之一。为应对大数据的挑战,云计算虚拟化网络技术的应用是技术发展必然的趋势。
面临海量的数据存储用于数据处理,数据中心为了提高资源利用效率与数据分析计算能力,,将大量采用虚拟化云计算的技术,包括服务器虚拟化技术等。网络架构总体的趋势将采用大二层虚拟化的网络,核心层采用40G/100G,接入层采用10G 的方式基本已经成为网络升级的方向。虚拟矩阵的数据中心主干网络中, 更多地将从10G网络升级到40G/100G。IEEE 803.3ba于2001年已经正式颁布采用40G/ 100G的网络技术标准,,数据中心主干链路88%以上小于100m 的距离,,多模光纤0M3/0M4采用MTP与QS F P接口多通道并行传输的方式,基于其良好的性价比,被业界认为是数据中心主干链路应用的首选方案。
3 支持大数据网络物理层接口技术分析
当网络主干走向40G/100G 的高速网络时, 数据中心接入层设备与服务器网络接口从1000M 走向10G是必然趋势。过去接入层的网络速率在1000M及以下,采用铜缆RJ45的接口模式在整体市场中处于主导地位。而当网络上升到1G0 时,将有多种接口模型可供选择,当前10G接口类型较多,技术要求的差异较大。从10 G接口类型中,基于功耗、端口密度、支持距离等方面思考,笔者认为从长远来看CX4铜缆方案并不占有太大的优势。而其余四种类型,SFP十DAC 的10G无源铜缆、SFP十AOC 的10G 有源光缆、SFP十10GBaseE一SR的光缆、RJ45Base -T的铜缆的解决方案,各有优缺点,这里不详细阐述。各种10G接口技术都在进步,不同时期的优势点也有变化,至于何种技术在市场上能得到更多应用,仍需拭目以待。
4 传输介质的技术应用分析
数据中心跟传统大楼的布线不太一样。对于光纤来讲,其实已不单单满足于10M、40G、100G,标准IEEE802.3ba已经正式颁布,40G用到8芯光纤来传输数据,而100G则用到20 芯的光纤。IEEE工作组的步伐也并没有就此停住,在完成了802.3 ba后,正在做一个向下兼容的、从10G到100G 的光纤标准"、
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04