京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,以“大数据”为代表的新技术对体育直播的冲击,大数据在体育直播中的挑战和创新,虽然现在来看威胁到体育解说员的角色,但是对这个行业的来说却是锦上添花。
从“单屏”到“多屏”
首先还是要从体育观赏方式的变化说起:移动端,就拿本次巴西世界杯来说,调查显示有 30% 的球迷使用智能手机或平板电脑观看比赛,另有 30% 的观众使用电视机收看比赛。
移动端的崛起,将赛事欣赏从“单屏”直接变成了“多屏”。奥美体育营销总监强炜在“英特尔体育行业与大数据应用”会议上分享了自己使用 APP 欣赏赛事的经历:我手机里面的 APP 不仅有集锦、回放等等,而且跟我的工作有直接关系,跟我的个人爱好可以随时发生关联。我飞去巴西看球的经历是很痛苦的行程,24小时的飞机,离比赛时间还有三小时,因为机场不能来接,我要在这个时间内到酒店去取票,然后再去场地,看完比赛以后当天晚上住下来,所以这个过程很痛苦,大部分的时间在飞机上。
我看互联网的科技已经可以让我们把世界上最好的比赛随时随地去看,这一点应该是互联网科技和大数据给我们渗透生活当中的各个表现。实际上这种视频网站以及移动终端已经把这个信息全面的推给到我们的用户。昨天我看到一个新闻是优酷和乐视在第一轮比赛之前的整个用户量都已经过亿,所以尽管由于时差的原因,很多人尽管也选择在家里看比赛,但是互联网的应用是全面的渗入到我们的体育生活当中。
通常来说,移动端设备 APP 应用的计算主要发生在前端,比如消息、微博、阅读、办公等等,对于后端的计算能力虽然也有一定要求,但是计算量往往比较小或者与服务器的通讯是间歇性的。体育直播则不同,数据计算体量大:视频是数字格式当中体积最大的,客户端的计算请求数量异常之高——因为观赛人数规模实在太庞大。就拿上届世界杯来说,权威机构尼尔森(Nielsen)发布的数据显示,有超过 1.11亿美国观众观看了 2010 年的足坛盛事。本届世界杯更甚,美国与加纳的小组赛首轮比赛仅英文电视转播就吸引了 1109.3 万观众,创下了 ESPN 单场男子足球比赛观众人数最多、收视率最高的纪录,这还不算西班牙语电视转播的观众。
上届世界杯 ESPN 派出了庞大的转播队伍,使用了全套顶尖的英特尔计算设备,包括笔记本电脑、服务器、网络和图形设备全方位助力网络和电视转播。ESPN公司负责人将其描绘为该电视网有史以来最为恢宏的节目转播活动。ESPN负责网络、支持与安全服务的副总裁 Dan Robertson 就曾表示:“那是我们所做过的最大的远程直播节目。”
美国这样以“橄榄球、棒球和篮球”为三大球类运动的国度都在热衷于足球。足球运动在中国长久不衰落,观赛球迷数量和美国相比只多不少,大概都可以用亿计都说不定。ESPN 是美国球迷首选的观赛平台,优酷土豆和新浪则是中国球迷网民的看球首选。优酷土豆和新浪的转播队伍很可能要服务比 ESPN 更庞大的观众群——中国球迷。中国新闻网的消息指出,世界杯期间优酷播放量已经破亿,另一家视频网站乐视公布数据,该网站日均覆盖用户数超过4500万,日均播放时长超过3500小时,日均播放次数超过2亿次。可见,互联网应用已经全面渗入到我们的体育生活当中。值得一提的是,优酷土豆、新浪和 ESPN 一样,这三家公司都采用了英特尔的产品作后端支持系统,提供稳定、可靠的直播服务。
观众人数的增大不仅带来了直播的压力,服务这部分群体的其他互联网和内容产品同样面临巨大的后端计算压力,比如网站的评论系统、论坛区。某一段精彩进球视频的播放次数可能会超过一场比赛的次数(因为会有人重复观看),并且球迷在评论中彼此互动,又进一步加大了网站的后台负担。所有这些挑战,如果没有足够强劲的计算能力支持,是没有办法实现的。
“多屏”普及也为体育直播的创新创造了条件,虽然平板设备能做的事情有限,且无法实现沉浸式体验(屏幕尺寸和解析度无法和主流高清电视相比),但是平板设备上丰富的 APP 资源和数据运算能力,使其能够与电视画面相配合,实现联动、互补。比如电视画面上是比赛实况,观众可能会在平板设备的“小屏”上刷微博,发表观点,也可能在上球迷论坛,与此时此刻同样在看球的其他人一起讨论。数据显示,美国地区有 85% 的平板用户在看电视的时候会使用他们的设备,多屏设备的使用体验从主动(self-initiated)变成了一种程序(programmed experience)。
这种与体育直播画面的联动和互补,体现了“大数据”的优势:预测分析,尤其是挖掘出直播画面当中被忽略的成分。比如美国职业棒球联盟(MLB)采用英特尔的服务器系统实现了比赛直播中“大数据”分析结果与直播画面的叠加。如图,仅仅从直播画面中,并无法判断两名外野手距离落点究竟有多远,反应速度、奔跑距离和加速度的详细数据。但是“大数据”技术能够把这些被忽略的细节加入到体育直播当中去,配合移动设备与电视的多屏呈现。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08