
大数据时代,以“大数据”为代表的新技术对体育直播的冲击,大数据在体育直播中的挑战和创新,虽然现在来看威胁到体育解说员的角色,但是对这个行业的来说却是锦上添花。
从“单屏”到“多屏”
首先还是要从体育观赏方式的变化说起:移动端,就拿本次巴西世界杯来说,调查显示有 30% 的球迷使用智能手机或平板电脑观看比赛,另有 30% 的观众使用电视机收看比赛。
移动端的崛起,将赛事欣赏从“单屏”直接变成了“多屏”。奥美体育营销总监强炜在“英特尔体育行业与大数据应用”会议上分享了自己使用 APP 欣赏赛事的经历:我手机里面的 APP 不仅有集锦、回放等等,而且跟我的工作有直接关系,跟我的个人爱好可以随时发生关联。我飞去巴西看球的经历是很痛苦的行程,24小时的飞机,离比赛时间还有三小时,因为机场不能来接,我要在这个时间内到酒店去取票,然后再去场地,看完比赛以后当天晚上住下来,所以这个过程很痛苦,大部分的时间在飞机上。
我看互联网的科技已经可以让我们把世界上最好的比赛随时随地去看,这一点应该是互联网科技和大数据给我们渗透生活当中的各个表现。实际上这种视频网站以及移动终端已经把这个信息全面的推给到我们的用户。昨天我看到一个新闻是优酷和乐视在第一轮比赛之前的整个用户量都已经过亿,所以尽管由于时差的原因,很多人尽管也选择在家里看比赛,但是互联网的应用是全面的渗入到我们的体育生活当中。
通常来说,移动端设备 APP 应用的计算主要发生在前端,比如消息、微博、阅读、办公等等,对于后端的计算能力虽然也有一定要求,但是计算量往往比较小或者与服务器的通讯是间歇性的。体育直播则不同,数据计算体量大:视频是数字格式当中体积最大的,客户端的计算请求数量异常之高——因为观赛人数规模实在太庞大。就拿上届世界杯来说,权威机构尼尔森(Nielsen)发布的数据显示,有超过 1.11亿美国观众观看了 2010 年的足坛盛事。本届世界杯更甚,美国与加纳的小组赛首轮比赛仅英文电视转播就吸引了 1109.3 万观众,创下了 ESPN 单场男子足球比赛观众人数最多、收视率最高的纪录,这还不算西班牙语电视转播的观众。
上届世界杯 ESPN 派出了庞大的转播队伍,使用了全套顶尖的英特尔计算设备,包括笔记本电脑、服务器、网络和图形设备全方位助力网络和电视转播。ESPN公司负责人将其描绘为该电视网有史以来最为恢宏的节目转播活动。ESPN负责网络、支持与安全服务的副总裁 Dan Robertson 就曾表示:“那是我们所做过的最大的远程直播节目。”
美国这样以“橄榄球、棒球和篮球”为三大球类运动的国度都在热衷于足球。足球运动在中国长久不衰落,观赛球迷数量和美国相比只多不少,大概都可以用亿计都说不定。ESPN 是美国球迷首选的观赛平台,优酷土豆和新浪则是中国球迷网民的看球首选。优酷土豆和新浪的转播队伍很可能要服务比 ESPN 更庞大的观众群——中国球迷。中国新闻网的消息指出,世界杯期间优酷播放量已经破亿,另一家视频网站乐视公布数据,该网站日均覆盖用户数超过4500万,日均播放时长超过3500小时,日均播放次数超过2亿次。可见,互联网应用已经全面渗入到我们的体育生活当中。值得一提的是,优酷土豆、新浪和 ESPN 一样,这三家公司都采用了英特尔的产品作后端支持系统,提供稳定、可靠的直播服务。
观众人数的增大不仅带来了直播的压力,服务这部分群体的其他互联网和内容产品同样面临巨大的后端计算压力,比如网站的评论系统、论坛区。某一段精彩进球视频的播放次数可能会超过一场比赛的次数(因为会有人重复观看),并且球迷在评论中彼此互动,又进一步加大了网站的后台负担。所有这些挑战,如果没有足够强劲的计算能力支持,是没有办法实现的。
“多屏”普及也为体育直播的创新创造了条件,虽然平板设备能做的事情有限,且无法实现沉浸式体验(屏幕尺寸和解析度无法和主流高清电视相比),但是平板设备上丰富的 APP 资源和数据运算能力,使其能够与电视画面相配合,实现联动、互补。比如电视画面上是比赛实况,观众可能会在平板设备的“小屏”上刷微博,发表观点,也可能在上球迷论坛,与此时此刻同样在看球的其他人一起讨论。数据显示,美国地区有 85% 的平板用户在看电视的时候会使用他们的设备,多屏设备的使用体验从主动(self-initiated)变成了一种程序(programmed experience)。
这种与体育直播画面的联动和互补,体现了“大数据”的优势:预测分析,尤其是挖掘出直播画面当中被忽略的成分。比如美国职业棒球联盟(MLB)采用英特尔的服务器系统实现了比赛直播中“大数据”分析结果与直播画面的叠加。如图,仅仅从直播画面中,并无法判断两名外野手距离落点究竟有多远,反应速度、奔跑距离和加速度的详细数据。但是“大数据”技术能够把这些被忽略的细节加入到体育直播当中去,配合移动设备与电视的多屏呈现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08