京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,以“大数据”为代表的新技术对体育直播的冲击,大数据在体育直播中的挑战和创新,虽然现在来看威胁到体育解说员的角色,但是对这个行业的来说却是锦上添花。
从“单屏”到“多屏”
首先还是要从体育观赏方式的变化说起:移动端,就拿本次巴西世界杯来说,调查显示有 30% 的球迷使用智能手机或平板电脑观看比赛,另有 30% 的观众使用电视机收看比赛。
移动端的崛起,将赛事欣赏从“单屏”直接变成了“多屏”。奥美体育营销总监强炜在“英特尔体育行业与大数据应用”会议上分享了自己使用 APP 欣赏赛事的经历:我手机里面的 APP 不仅有集锦、回放等等,而且跟我的工作有直接关系,跟我的个人爱好可以随时发生关联。我飞去巴西看球的经历是很痛苦的行程,24小时的飞机,离比赛时间还有三小时,因为机场不能来接,我要在这个时间内到酒店去取票,然后再去场地,看完比赛以后当天晚上住下来,所以这个过程很痛苦,大部分的时间在飞机上。
我看互联网的科技已经可以让我们把世界上最好的比赛随时随地去看,这一点应该是互联网科技和大数据给我们渗透生活当中的各个表现。实际上这种视频网站以及移动终端已经把这个信息全面的推给到我们的用户。昨天我看到一个新闻是优酷和乐视在第一轮比赛之前的整个用户量都已经过亿,所以尽管由于时差的原因,很多人尽管也选择在家里看比赛,但是互联网的应用是全面的渗入到我们的体育生活当中。
通常来说,移动端设备 APP 应用的计算主要发生在前端,比如消息、微博、阅读、办公等等,对于后端的计算能力虽然也有一定要求,但是计算量往往比较小或者与服务器的通讯是间歇性的。体育直播则不同,数据计算体量大:视频是数字格式当中体积最大的,客户端的计算请求数量异常之高——因为观赛人数规模实在太庞大。就拿上届世界杯来说,权威机构尼尔森(Nielsen)发布的数据显示,有超过 1.11亿美国观众观看了 2010 年的足坛盛事。本届世界杯更甚,美国与加纳的小组赛首轮比赛仅英文电视转播就吸引了 1109.3 万观众,创下了 ESPN 单场男子足球比赛观众人数最多、收视率最高的纪录,这还不算西班牙语电视转播的观众。
上届世界杯 ESPN 派出了庞大的转播队伍,使用了全套顶尖的英特尔计算设备,包括笔记本电脑、服务器、网络和图形设备全方位助力网络和电视转播。ESPN公司负责人将其描绘为该电视网有史以来最为恢宏的节目转播活动。ESPN负责网络、支持与安全服务的副总裁 Dan Robertson 就曾表示:“那是我们所做过的最大的远程直播节目。”
美国这样以“橄榄球、棒球和篮球”为三大球类运动的国度都在热衷于足球。足球运动在中国长久不衰落,观赛球迷数量和美国相比只多不少,大概都可以用亿计都说不定。ESPN 是美国球迷首选的观赛平台,优酷土豆和新浪则是中国球迷网民的看球首选。优酷土豆和新浪的转播队伍很可能要服务比 ESPN 更庞大的观众群——中国球迷。中国新闻网的消息指出,世界杯期间优酷播放量已经破亿,另一家视频网站乐视公布数据,该网站日均覆盖用户数超过4500万,日均播放时长超过3500小时,日均播放次数超过2亿次。可见,互联网应用已经全面渗入到我们的体育生活当中。值得一提的是,优酷土豆、新浪和 ESPN 一样,这三家公司都采用了英特尔的产品作后端支持系统,提供稳定、可靠的直播服务。
观众人数的增大不仅带来了直播的压力,服务这部分群体的其他互联网和内容产品同样面临巨大的后端计算压力,比如网站的评论系统、论坛区。某一段精彩进球视频的播放次数可能会超过一场比赛的次数(因为会有人重复观看),并且球迷在评论中彼此互动,又进一步加大了网站的后台负担。所有这些挑战,如果没有足够强劲的计算能力支持,是没有办法实现的。
“多屏”普及也为体育直播的创新创造了条件,虽然平板设备能做的事情有限,且无法实现沉浸式体验(屏幕尺寸和解析度无法和主流高清电视相比),但是平板设备上丰富的 APP 资源和数据运算能力,使其能够与电视画面相配合,实现联动、互补。比如电视画面上是比赛实况,观众可能会在平板设备的“小屏”上刷微博,发表观点,也可能在上球迷论坛,与此时此刻同样在看球的其他人一起讨论。数据显示,美国地区有 85% 的平板用户在看电视的时候会使用他们的设备,多屏设备的使用体验从主动(self-initiated)变成了一种程序(programmed experience)。
这种与体育直播画面的联动和互补,体现了“大数据”的优势:预测分析,尤其是挖掘出直播画面当中被忽略的成分。比如美国职业棒球联盟(MLB)采用英特尔的服务器系统实现了比赛直播中“大数据”分析结果与直播画面的叠加。如图,仅仅从直播画面中,并无法判断两名外野手距离落点究竟有多远,反应速度、奔跑距离和加速度的详细数据。但是“大数据”技术能够把这些被忽略的细节加入到体育直播当中去,配合移动设备与电视的多屏呈现。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26