
教育大数据:想说爱你不容易_数据分析师
近两年,“大数据”在教育领域日益成为热点名词,和“在线教育”相呼应。从今年新东方、学大[微博]等教育机构发布的教育产品来看,几乎每一款产品都会提到大数据。既然如此受到重视,那么在当下教育领域,“大数据”有何特点?又有何作为?
专家指出,目前国内教育领域的“大数据”仍处于概念阶段,大家都在起步和探索过程中,尚无比较成功的大数据应用案例,不少大数据应用也都处于较浅的层次。不过,随着教育大数据的不断积累和深入发展,“大数据”必将有利于我们的个性化教育,对教学和管理产生深刻影响。
随着“大数据”概念不断升温,教育行业如今也被认为是大数据可以大有作为的一个重要应用领域。几乎每家不甘落后的教育机构都在拥抱大数据,把大数据当作在激烈竞争中脱颖而出的秘密武器。
“其实,十几年前我们就在做数据仓库和数据挖掘。如今大数据这个概念兴起,主要基于两点,一是数据海量增长,处理样本数变多;二是物理运算能力 增强,给处理海量数据带来可能。”在计算机博士、朗播网CEO杜昶旭看来,大数据既没有那么神秘,但也不像有些人想象得那么简单。
干扰性数据多 影响统计分析精度
杜昶旭认为,与其他行业的大数据相比,教育行业大数据目前数据量比较小,教育数据噪声也比较高。他解释,目前在线教育不像电商,用户数量庞大,数据可以累积到海量。而且教育垂直属性特别明显,大量数据会分流向不同垂直领域。
而不同垂直领域之间的数据融合度比较低,比如语文和数学的数据很难放到一起来分析;数据噪声简单讲指干扰性数据、无用数据,比如录播视频,用户 行为很简单,有暂停、关闭、重看等等,但是这些操作的原因很多,并不一定是没看懂内容,所以干扰性数据非常多,数据统计分析的精度会受影响。
“此外,教育数据标准化程度非常低。数据大致可分为结构化数据和非结构化数据。以描述人一个人打比方,结构化数据就是人的身高、体重、性别;非 结构化数据则可以是人的声音、照片等。”杜昶旭说,很多教育数据比如视频数据、语音数据等都是非结构化数据,数据模型构建会比较复杂,“所以,教育大数据 需要解决数据量和数据处理的问题。”
优质技术分析 要有一流试题保障
互联网教育研究院院长吕森林也指出,教育大数据分析并不是有数据就可以,如果数据中有很多垃圾数据,那么分析得出的结论也可能是垃圾结论。
“比如题库类产品,一道题可能需要20多个指标来分辨学生各方面的情况,如区域、学科、难度、知识点等等,如果试题质量比较低,区分度比较低, 那做大数据分析的意义就不会太大。此外,现在的大数据分析多集中在选择、判断等客观题,对带有步骤的主观题、作文等进行统计分析则有更高难度。”因此,题 库的大数据分析看起来比较简单,但实际上技术、资金门槛都比较高。
业内点评
“习”比“学”更易采集和分析
那么,教育大数据可以发挥怎样的作用呢?大数据研究专家、上海海事大学经济管理学院副教授魏忠认为,大数据技术的应用将有利于个性化教育,标准化的学习内容由学生自己组织学习,学校和教师更多的是关注学生的个性化培养,教师由教学者逐渐转变为助学者。
“重要的是数据背后的那个人。”微课网副总裁夏明瑞以历史学科视频课程为例,如果用户观看几分钟就关掉了,以后再没看过,那就要关注用户的这种 行为数据。他关掉的原因大致可能有两种:一种是学得非常好,另一种是学得不好,看不懂。单节课的数据可能不够精准,但对整个课程体系的数据进行统计分析之 后就会相对精准了。
杜昶旭则认为,目前“学”的过程采集数据的难度较大,“习”的过程采集和分析数据会相对容易一些。“今年我们推出了能力图谱,通过对学生行为数 据进行诊断,看看学生的问题到底在哪里,然后基于能力缺陷推送需要完成的训练任务,提高学生学习效率。”杜昶旭说,这种大数据分析既能帮助学生个性化学 习,也能帮助老师进行个性化教学。
专家说法
大数据适应个性化学习
魏忠,数据研究专家、上海海事大学经济管理学院副教授魏忠
人们对大数据的理解有很多,目前我倾向于把大数据理解为全量数据。
科学研究最简单的是抽样方式,然后进行推导,后来人们发现这有很大问题,于是就有了统计学,用概率来解决问题。但是抽样的量一旦到了一定程度之 后,并不一定是越大越精准,什么样的量是最好的,就需要考量。而如果把全量的数据都拿来进行分析,那肯定是最准确的,而所谓大数据应该是全量数据。
这种大数据与传统的数据相比,具有非结构化、分布式、数据量巨大、数据分析由专家层变化为用户层、大量采用可视化展现方法等特点,这些特点正好 适应了个性化和人性化的学习变化。传统数据诠释的是宏观的教育状况、整体的学生水平,且其采集方法、内容归类、分析构成等已被摸索出一套成熟的标准,数据 更多是在阶段性的评估中获得。而大数据更关注微观、个体层面,要求时时处处采集信息,全面客观记录信息,大量采用可视化展现方法等等,帮助信息收集方获取 精准材料。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16