京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何拥抱大数据时代(3)_数据分析师
“黄埔一期”的历史使命是探路
记者:目前国内大数据方面的人才供求情况如何?
袁卫:2012年美国麦肯锡咨询公司提供了一份报告,对美国大数据人才需求进行了分析。他们把大数据人才分为两类,一类叫做“数据经理或数据工程师、数据分析师”;另一类叫做“数据科学家”。数据科学家熟练掌握计算机、统计、经济管理等技能,能够领导团队从海量数据中找出规律,发现知识,做出决策,创造价值。根据麦肯锡的报告,到2018年,美国数据分析师的人才需求将达150万人左右,高层次的数据科学家的需求缺口在14-18万人。中国的情况,目前在百度、阿里巴巴、京东等电子商务企业和腾讯等网络媒体大数据公司中有一些大数据方面的人才,但是能称得上大数据科学家的人才,非常非常少。我国相关部门预计3到5年内,来自政府、媒体、企业等方面的数据工程师和数据分析师的需求将达100万人左右,而目前的人才培养,无论是规模还是质量水平,都远远达不到要求。
记者:首批50人的培养计划,只是一个试点探索。对于大规模培养大数据人才,您有什么建议?
袁卫:在大数据时代,数据分析,越来越成为我们工作生活中一个最基本的技能。大数据人才的培养,正是基于这样一个时代的发展背景。大数据人才的适用领域非常广泛,有着巨大的社会需求。他们的就业,遍及生物、医学、经济、社会、媒体、金融、教育、政府各个方面,只要有数据的地方,他们都可以施展才华。这个实验班,其意义在于探索一种新的人才培养模式。如果实践证明比较成功的话,我们“应用统计硕士专业学位教育指导委员会”会推动在全国推广,比如上海的一些学校今年就希望送学生来学习。将来大城市的一些高校,完全可以参考我们这个实验班的模式。现在全国有78所高校开办应用统计专业硕士,他们绝大多数都有条件开展类似的人才培养,都可以进行积极探索,相关企业参加的积极性也非常高。
记者:对于“黄埔一期”的这50名幸运儿,您有什么期待?
袁卫:我希望他们毕业后,到用人单位经过几年的锻炼,能够主管大数据研究项目或大数据分析部门,成为数据科学家这个层面的高级人才。这类高层次的大数据人才是国家最紧缺的。探索培养高层次大数据人才的路径、满足国家日益增长的需要,这是中国人民大学等五校组建大数据人才培养协同创新平台的目标和使命。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17