
“大数据”运用,信息化战场“拨云见日”_数据分析师
核心提示
当前,国际互联网正以每秒产生数以万TB的海量数据在加速暴涨中。
据国际权威机构统计,目前每天约20亿人使用互联网,网络攻击时有发生,“大数据”环境支撑下的信息网络安全形势日趋严峻。
据悉,目前在全球范围已有40多个国家相继颁布了网络空间安全实施战略,保障信息网络安全,迎接新军事变革挑战,在各军事强国中均上升为国家安全战略。
“大数据”思维 挑战机遇引领发展
纵观战争史实,军事领域一直是先进技术的天然试验场,兵家通过驾驭一次次科技革命,将人类智慧、战法与科技创新高度融合,使军事变革不断被推上时代高峰。
外军研究认为,现代无定型术语“大数据”,海量般信息生成一个杂乱的大背景,就如同浩瀚大西洋换算成水,若每加仑代表一个字节或字符,其数据存储量将带来前所未有的挑战。简单来说,“战争中如果能够将几个小时的视频降至最关键的30秒视频,这本身就是一个胜利。”
据外媒披露,美国防部近来在探索大数据的军事运用时,面对迫在眉睫的预算紧缩形势感到巨大压力,担忧战时驾驭大数据能力不足会带来严重的影响,因为战争中海量信息暴涨,意味着所有军事行动将被淹没,所以强调以“大数据”思维引领发展。
“大数据”决策 夺取认知的新高地
现代战争,是基于信息系统的体系作战,战争决策无疑将高度依赖基于海陆空天广阔战场的信息网络数据分析和与指挥员高超指挥艺术的有机融合,而“大数据”运用则将成为提高科学决策能力、决定战争胜负的关键因素之一。因此树立“大数据”观念,抢占“大数据”认知领域新高地,成为时代发展的必然要求。
伊拉克战争中,各国军事专家对战争态势每每做出的预测,均出现了严重误判,这除了战争善以奇制胜,更为重要的也是因为思维观念与信息时代严重脱节或格格不入所致。甚至人们对“大数据”的影响已产生由局部到全局、由单纯到繁杂、由因果到关联的根本性变化完全缺乏认知。所以说,信息时代只有重视“大数据”认知,才能做出科学决策,战时才能真正掌握克敌制胜的主动权。
“大数据”驱动 善以数据之兵取胜
其实,“大数据”是由海量数据小溪汇集而成的。所以科学探索“大数据”规律,提高驾驭“大数据”能力,才能够练就打赢真本领。
军事活动是孕育战争“大数据”最肥沃的土壤。军事训练、演习甚至包括抢险救灾、反恐维稳、安保警戒等非战争军事行动,都能够获取武器精度、弹药效能、反应速度、行动能力、保障水平、地域地形等最原始的大量作战数据信息,这些数据均可成为军事谋略、战法创新、指挥作战等最宝贵的资源。
打仗重数据,才能够实现“作战决策快速正确、指挥控制精确高效、火力打击联合准确、支援保障及时顺畅”目标。然而,在“大数据”环境背景下,作战数据决不只是参战人数和武器装备数量的简单叠加,而应从包括军心士气、战斗作风、地理环境、作战效能、智力资源等实战需要出发,通过科学分析,生成综合战斗力数据,并善于解决制约体系作战的瓶颈问题,从而消除信息化战争迷雾,达到善以数据之兵取胜的新境界。
“大数据”谋略 庙算运筹直面战场
据悉,奥巴马曾高度评价“大数据”,是“未来世界的新石油”。
高技术战场,指挥信息系统纵横交织,就如同高效传输的石油管线,能把作战数据源源不断输送到各指挥作战系统,使海陆空天电网基于信息系统的联合作战体系实现一体化高效运转。
可是“多算胜,少算不胜”,军事资源的利用,并不能单纯依靠技术来简单加工处理,而必须依靠军事谋略和战法创新运用,才能够“点石成金”“出神入化”。历史上,孙膑减灶擒庞涓、虞诩增灶破羌,无不是通过隐真示假克敌制胜的。因此“大数据”时代,“知己知彼”“庙算于先”必将更富传奇色彩。
现代高技术战争,信息获取能力空前增强,侦察手段丰富多样,必须与“大数据”战法相适应运筹谋略,方能克敌制胜。而且无论宏观还是微观,必须对战场态势、信息情报、作战保障、水文气象等信息数据了如指掌,对装备状况、杀伤机理、作战成效等数据明察秋毫,且善用人工智能、云计算等高新技术巧出奇兵,才能够智胜强敌。所以,信息化战争在海量“大数据”支撑下,谋略制胜必将上演连台活剧。
文章来源:CDA数据分析师培训官网数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29