京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”运用,信息化战场“拨云见日”_数据分析师
核心提示
当前,国际互联网正以每秒产生数以万TB的海量数据在加速暴涨中。
据国际权威机构统计,目前每天约20亿人使用互联网,网络攻击时有发生,“大数据”环境支撑下的信息网络安全形势日趋严峻。
据悉,目前在全球范围已有40多个国家相继颁布了网络空间安全实施战略,保障信息网络安全,迎接新军事变革挑战,在各军事强国中均上升为国家安全战略。
“大数据”思维 挑战机遇引领发展
纵观战争史实,军事领域一直是先进技术的天然试验场,兵家通过驾驭一次次科技革命,将人类智慧、战法与科技创新高度融合,使军事变革不断被推上时代高峰。
外军研究认为,现代无定型术语“大数据”,海量般信息生成一个杂乱的大背景,就如同浩瀚大西洋换算成水,若每加仑代表一个字节或字符,其数据存储量将带来前所未有的挑战。简单来说,“战争中如果能够将几个小时的视频降至最关键的30秒视频,这本身就是一个胜利。”
据外媒披露,美国防部近来在探索大数据的军事运用时,面对迫在眉睫的预算紧缩形势感到巨大压力,担忧战时驾驭大数据能力不足会带来严重的影响,因为战争中海量信息暴涨,意味着所有军事行动将被淹没,所以强调以“大数据”思维引领发展。
“大数据”决策 夺取认知的新高地
现代战争,是基于信息系统的体系作战,战争决策无疑将高度依赖基于海陆空天广阔战场的信息网络数据分析和与指挥员高超指挥艺术的有机融合,而“大数据”运用则将成为提高科学决策能力、决定战争胜负的关键因素之一。因此树立“大数据”观念,抢占“大数据”认知领域新高地,成为时代发展的必然要求。
伊拉克战争中,各国军事专家对战争态势每每做出的预测,均出现了严重误判,这除了战争善以奇制胜,更为重要的也是因为思维观念与信息时代严重脱节或格格不入所致。甚至人们对“大数据”的影响已产生由局部到全局、由单纯到繁杂、由因果到关联的根本性变化完全缺乏认知。所以说,信息时代只有重视“大数据”认知,才能做出科学决策,战时才能真正掌握克敌制胜的主动权。
“大数据”驱动 善以数据之兵取胜
其实,“大数据”是由海量数据小溪汇集而成的。所以科学探索“大数据”规律,提高驾驭“大数据”能力,才能够练就打赢真本领。
军事活动是孕育战争“大数据”最肥沃的土壤。军事训练、演习甚至包括抢险救灾、反恐维稳、安保警戒等非战争军事行动,都能够获取武器精度、弹药效能、反应速度、行动能力、保障水平、地域地形等最原始的大量作战数据信息,这些数据均可成为军事谋略、战法创新、指挥作战等最宝贵的资源。
打仗重数据,才能够实现“作战决策快速正确、指挥控制精确高效、火力打击联合准确、支援保障及时顺畅”目标。然而,在“大数据”环境背景下,作战数据决不只是参战人数和武器装备数量的简单叠加,而应从包括军心士气、战斗作风、地理环境、作战效能、智力资源等实战需要出发,通过科学分析,生成综合战斗力数据,并善于解决制约体系作战的瓶颈问题,从而消除信息化战争迷雾,达到善以数据之兵取胜的新境界。
“大数据”谋略 庙算运筹直面战场
据悉,奥巴马曾高度评价“大数据”,是“未来世界的新石油”。
高技术战场,指挥信息系统纵横交织,就如同高效传输的石油管线,能把作战数据源源不断输送到各指挥作战系统,使海陆空天电网基于信息系统的联合作战体系实现一体化高效运转。
可是“多算胜,少算不胜”,军事资源的利用,并不能单纯依靠技术来简单加工处理,而必须依靠军事谋略和战法创新运用,才能够“点石成金”“出神入化”。历史上,孙膑减灶擒庞涓、虞诩增灶破羌,无不是通过隐真示假克敌制胜的。因此“大数据”时代,“知己知彼”“庙算于先”必将更富传奇色彩。
现代高技术战争,信息获取能力空前增强,侦察手段丰富多样,必须与“大数据”战法相适应运筹谋略,方能克敌制胜。而且无论宏观还是微观,必须对战场态势、信息情报、作战保障、水文气象等信息数据了如指掌,对装备状况、杀伤机理、作战成效等数据明察秋毫,且善用人工智能、云计算等高新技术巧出奇兵,才能够智胜强敌。所以,信息化战争在海量“大数据”支撑下,谋略制胜必将上演连台活剧。
文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08