京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我想查找某一方面的大数据。怎么办:如何操作,上哪家网站,使用什么软件等。 我需要北京市市内货运出租9月份的营运数据如何操作!
题主把问题改成了“我需要北京市市内货运出租9月份的营运数据如何操作”,这和想象中的学术问题不一样啊摔!
先泼一盆冷水:题主要做好准备花钱买这个数据。
可能的来源:北京市各种出租车公司(货运出租公司?),打车APP(如果是客运出租的话)、市场调查公司、自己花钱去打车跟自己聊(也是针对客运)。 准确度依次下降,麻烦程度依次上升,为了得到同样准确的估计,花费大概会依次上升。
不太可能的来源:互联网。
以及为什么这种数据要钱:
1. 采集要钱。对于出租车公司来说,这个采集过程相对简单,因为计价器都是他们的,他们随时知道自己手下出租车的运营状况,他们的花费基本上是公司的运营费用。对于打车 APP来说,他们用APP收集,相比出租车公司来说,又多了一份市场推广的成本。市场调查公司是靠收集数据为生的,所以不管数据用什么渠道花多少钱能得到,肯定要加价买给你——之所以他们能做这个生意是有时候你没有数据的渠道,有时候你没有那么多人工去实地调查。
2. 数据本身的营利潜力。看到这个数据能做的事情太多了,我可以知道什么地方打车不方便、从哪到哪的客流大、什么时间哪里的打车需求大、接什么单子跑得快、什么路线容易堵车等等等等,这都是大好的赚钱机会啊!
当然了,如果题主有亲戚朋友在出租车公司工作(最好是管理岗/老司机)就主动串串门套套近乎吧,上面这些都当我没说。
====以下是原答案的分割线=====
谢邀。题主起码来点提示“某一方面的大数据”是指什么,另外您的应用场景是什么吧,不然我只能告诉你请上http://google.com,用google chrome/mozilla firefox等软件。或者如果您想说“我想要X银行的日交易详情用来预测股票走势”,那我只能建议您找找黑客网站,使用黑客工具了——不保证效果且后果自负。
说正经的,如果题主想自己采集大数据(其实我猜不是,那就去找现成数据集吧,,以下可以参考:
1. 图片/视觉:Google Images。直接输入搜索词,然后人工把一些符合目标的图片下下来。这是Caltech 101/256和ImageNet的主要采集方式
2. 文本/自然语言处理:
2.1. Wikipedia。Wikipedia经常发布整个网站的snapshot,包括所有的文本(有些版本还包括多媒体资料),这是自然语言处理研究常用的数据集之一。好处是它还包含多语言版本,有时也被机器翻译学者用作研究对象。
2.2. Google Search。搜索引擎的搜索条目摘要(search snippets)也是重要的语义/语料来源之一。
2.3. WordNet。英语名词的分类、解释和相互关系。常用于语义任务。
3. 语音/语音识别:LDC(Linguistic Data Consortium)。学界做语音识别的数据集大多来自这里。有英语、汉语(普通话)、阿拉伯语等多语种的数据——不过大部分数据要钱。
4. 其它:Amazon Mechanical Turk。如果你有大量数据需要利用人类常识进行标注(而非专业人士分析),但手头只有闲钱没有人力的话,AMT是不二的选择。ImageNet等数据集都是在AMT的帮助下完成的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01