
作者:接地气的陈老师
来源:接地气学堂
一次在医院陪护家人做手术,和医生、、化验师、护士相处一整周,突然发现,这个关系跟数据分析、数据挖掘、数据运营非常像呀!特此mark,让新同学快速了解一下。
大家都知道,要当医生需要读一车的书,至少博士以上学历还得实习nnn年。然而这些学富五车的学霸们,面对的病人可能是千奇百怪。病人们说着听不懂的方言,看不懂各种医学术语,哼哼唧唧讲不清楚病情,却对着缴费清单斤斤计较:不就是肚子疼一下吗为啥要做这么多检查???医院就是想骗钱吧!
所以一开始我就说:成为医生前,医学是个技术工种,真正成为医生了,医学就彻底变成了业务工种了。看病绝对是一种业务能力,真想治好病,就得:
这一切都不是靠看白细胞多了就打消炎针看红细胞低了就吃复合多糖搞掂的;更不是病人进门说:“我肚子疼”就给他开治肚子的药;更不是从怀里掏出XX营养果汁然后说这个东西包治百病,如果没治好就是你的用量不够,要加大用量喝——只有搞传销的骗子才会这么干。医生要做的,是沟通、设计方案、验证假设、分析问题、考虑病人财力/情绪,综合性的设计解决方案。
当然,医生也有运气好的时候,比如碰上我们这种病人。医生问哪里不舒服,从来不会哼哼唧唧,而是能准确回答出来:“昨天早上9点开始头晕,有呕吐倾向,到现在没有看到好转,过往因为颈椎不好有类似病史”。不过好病人可遇不可求,还是得打铁靠自身硬。
这一切处理问题的方法像极了数据分析师。虽然作为数据分析师懂的是数据、统计学、编程、业务等知识,可真正面对的业务问题错综复杂。当企业面临经营问题的时候,谁都没把握一定说XX指标不好就是因为没做促销,就是因为没上新产品。需要系统的诊断才行。
更何况,还有各种不懂数据分析的业务部门来搞事情。指望你从裤裆里掏出“阿尔法狗神器”只要写200行代码就能洞察一些问题的;平时不做基础数据建设,不做好埋点,不规范流程,遇到问题就来问题“为什么别人能大数据分析,我们不能??”的;一口咬死业绩不行都是别人的锅,跟自己一点关系没有,你们不要胡乱分析的——各种丑态,和那些无知的医闹有啥区别?所以真的想做好数据分析工作,理论是必备的,实际处理各种业务问题的能力也同样非常重要。
相比之下,血液化验、放射检查等等化验科的工作就单纯很多。因为肚子疼可能是由多种复杂因素共同影响的,具体原因非常不确定。但检验具体某个问题,某个指标是否异常,却是非常确定的,只有:是/否两种可能。因此我们看到化验科都有各自精密的仪器设备,并且检查标准也非常清晰,不需要人工判断。
这像极了数据挖掘,或者算法的工作。其实目前算法最成功的商业应用也正是在图像识别领域。比如医生拍片检查关节情况,也是要通过计算各种角度,位置关系来判断,用算法做图像识别和计算,能大大提升准确度,也能减轻医生的负担。类似的,我们看到算法发展较快的领域,往往都是这种清晰目标下模型训练,比如图像识别应用于安防、医疗,声音识别应用于文字输入等等。由人工梳理复杂问题,设定清晰的目标,标注结果,再交由算法训练稳定的模型,是沉淀经验,积累分析成果的重要过程。
至于护士们,就像极了数据运营,或者需要看数据的运营。护士做的是护理工作,也需要关注指标,但是她们完全不需要懂背后的原理,只要知道XX指标是用来看XX的,XX指标下降了要做应对,XX指标跌破红线了叫医生就好了。护理工作核心就是执行,护理好了不出事就行。
于是陈老师便看到搞笑一幕:手术完了,病人挂了监护器。监护器做了很好看的可视化,还标准了心肺等图形,还有波浪线,还有数值。当指标数值低于或高于某些值,监护器还会一闪一闪嘟嘟嘟的响。真是个好数据产品!然而每次监护器报警,陈老师急匆匆的去找护士,护士都淡定的说:
陈老师不禁感慨:果然,在哪里都是做数据产品的自己纠结做的好不好,自己YY一堆使用场景,业务部门却自有一套看数据的方法啊!!!
所以总结一下:对看病来说,化验、治疗、护理三者缺一不可。对企业而言,分析、算法、数据运营也缺一不可。数据分析适合解决复杂的业务问题,算法适合对特定问题训练模型提升效率,数据运营当然是数据说话的干脏活累活,大家都在为经营做贡献。
可有些同学会好奇:那陈老师,为啥我看到的是数据分析都在迷茫自己要做什么,人人都想21天0基础学算法年薪百万,运营三天就写一篇分析心得却事到临头老是来要数要结果呢??为啥我看到的企业都这么乱??
答:还是对比医院,你看人家分工多清晰。化验、医生、护士各司其职。你看人家的医生,每个科室有各自职责,科室内有一个专家级学术带头人,一个资深科室主任,每天查房的时候专家亲自带着一大票人,现场指导小弟。虽然小弟们都是博士起步,但是还需要经过大量磨炼才能成为那个主任。
更何况
和不遵医嘱,自己作死,只抱怨缴费太多,还指望医生包治百病,出了事还来医院闹的医闹有什么区别??
所以,做数据不容易,且行且珍惜。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18