京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源: 丁点帮你
重复测量方差分析与我们之前学习的各种方差分析(单变量,对于因变量而言)的区别主要在于“重复”二字。
之前的方差分析是对一个变量的变异进行分解(即所谓的离均差平方和);重复测量的方差分析则是针对多个变量进行的,也可以叫做变异分解,但此时它有了一个新名字,叫方差-协方差矩阵的变异分解。
什么叫协方差?什么又叫矩阵?
简单说说,协方差就是两个变量之间相关关系的度量,学习过相关分析的同学可能熟悉点儿,相关系数就是通过协方差计算出来的。
正是因为出现了多个因变量、所以才会需要研究相关(即协方差),而也因为相关,其就不能使用一般的方差分析,因为破坏了独立性假设。
而对于矩阵,它是高等数学-线性代数中最基本的概念,暂时就把它看做一个一个数的方阵。
出现这么多新的概念,就是因为,现在我们分析的因变量不再是一个,而是多个,所以,重复测量的方差分析,也可以看做是多元方差分析(多个因变量)。
实际上,SPSS也是这样操作的,大家听过的“球形检验”,就是用来判断需不要看多元方差分析的结果,下面我们通过一个案例来具体讲讲。
案例:某研究者通过动物实验来探究海水淹溺后残留于肺内的海水是否会导致肺损伤。将12只杂种犬随机分为两组,每组6只,一组用海水灌注右肺,另一组海水灌注全肺。每只犬分别在海水灌注前、灌注后5min、30min、60min、120min检测氧分压。
(案例来自医咖会-刘桂分《医学统计学》)
具体的数据如下表
这是一个典型的可以使用重复测量方差分析的数据,而且稍显复杂的是,这里进行了分组:灌注右肺(用“1”表示)和灌注全肺(用“2”表示)。
还记得我们之前讲协方差分析的时候强调的内容吗?分析数据前,首先找到X、Y、Z,即自变量、因变量、协变量。
本案例中自变量是分组变量(右肺VS全肺),因变量是氧分压,没有协变量。
不过,我们昨天说过,重复测量的方差分析很重要的一点是检验“时间效应”,即不同的时间点测量的数据是否有差异。
所以,在这里,也可以把时间效应看做一个特殊的自变量,而且它有一个专门的名字,叫within-Subject Factor,一般直译为“受试者内因素”。
SPSS中进行重复测量方差分析的具体操作可以参考链接(来源:医咖会),之后我们也考虑录制专门的视频进行讲解。
做过重复测量的同学可能知道,SPSS会输出很多结果,让人眼花缭乱,所以到底应该怎么看这些结果呢?
下面这张图给我们做了一个梳理,推荐给大家:
由上图可知,对于SPSS给出的一系列结果,大家应该首先找到“球形检验”的结果(Mauchly's Test of Sphericity):
球形检验结果,该例不满足球形假设(P小于0.05)
如果球形检验的P值(sig)大于0.05,称作数据满足球形假设,此时可直接看一元方差分析的结果(Tests of With-in Subjects Effects),而且是看第一行(Sphericity Assumed),根据其P值(sig)判断时间效应(time)、以及时间和分组的交互效应(time*group)。
如果球形检验的P值(sig)小于0.05,则称数据不满足球形假设,此时就需要结合多元方差分析和一元方差分析的矫正结果,一般两个结果会一致,如果不一致则以多元方差分析的结果为准。
结合本案例,因为其球形检验P值小于0.05,不符合假设,所以看多元方差分析或校正后的一元结果,如下图:
多元方差分析结果
一元方差分析结果(校正后)
蓝线代表右肺组;绿线代表全肺组
组间比较的单变量方差分析
可以发现,以上结果都显示差异有统计学意义(P<0.001),意味着:
1) 时间效应(time)具有统计学意义:即灌注海水后,犬肺的氧分压会随着灌注的时间的延长而逐渐下降,到灌注后60min达到最低;
2)交互效应(time*group)具有统计学意义:随着灌注时间的延长,单肺灌注与全肺灌注氧分压下降的幅度不同,从图形上看就是,直线的斜率不同,全肺灌注的犬氧分压下降幅度大(直线更陡峭)
3)单独组间效应(group)具有统计学意义:此处SPSS对多个因变量进行了数据变换,从而进行单变量方差分析,结果显示P<0.05,表明灌注部位会影响氧分压。
由此,对重复测量的方差分析进行一个简单总结:
重复测量方差分析最核心的功能是研究指标是否随着时间的变化而变化(time),拿到SPSS的分析结果,应该首先看“球形检验”,然后根据其结果,选择对应的分析表格。如果除了时间因素之外还有分组效应,则分析逻辑与单变量的单因素或多因素方差分析类似。
以上图片参考来自“医咖会”,如有侵权,请联系删除!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15