
作者:丁点helper
来源: 丁点帮你
重复测量方差分析与我们之前学习的各种方差分析(单变量,对于因变量而言)的区别主要在于“重复”二字。
之前的方差分析是对一个变量的变异进行分解(即所谓的离均差平方和);重复测量的方差分析则是针对多个变量进行的,也可以叫做变异分解,但此时它有了一个新名字,叫方差-协方差矩阵的变异分解。
什么叫协方差?什么又叫矩阵?
简单说说,协方差就是两个变量之间相关关系的度量,学习过相关分析的同学可能熟悉点儿,相关系数就是通过协方差计算出来的。
正是因为出现了多个因变量、所以才会需要研究相关(即协方差),而也因为相关,其就不能使用一般的方差分析,因为破坏了独立性假设。
而对于矩阵,它是高等数学-线性代数中最基本的概念,暂时就把它看做一个一个数的方阵。
出现这么多新的概念,就是因为,现在我们分析的因变量不再是一个,而是多个,所以,重复测量的方差分析,也可以看做是多元方差分析(多个因变量)。
实际上,SPSS也是这样操作的,大家听过的“球形检验”,就是用来判断需不要看多元方差分析的结果,下面我们通过一个案例来具体讲讲。
案例:某研究者通过动物实验来探究海水淹溺后残留于肺内的海水是否会导致肺损伤。将12只杂种犬随机分为两组,每组6只,一组用海水灌注右肺,另一组海水灌注全肺。每只犬分别在海水灌注前、灌注后5min、30min、60min、120min检测氧分压。
(案例来自医咖会-刘桂分《医学统计学》)
具体的数据如下表
这是一个典型的可以使用重复测量方差分析的数据,而且稍显复杂的是,这里进行了分组:灌注右肺(用“1”表示)和灌注全肺(用“2”表示)。
还记得我们之前讲协方差分析的时候强调的内容吗?分析数据前,首先找到X、Y、Z,即自变量、因变量、协变量。
本案例中自变量是分组变量(右肺VS全肺),因变量是氧分压,没有协变量。
不过,我们昨天说过,重复测量的方差分析很重要的一点是检验“时间效应”,即不同的时间点测量的数据是否有差异。
所以,在这里,也可以把时间效应看做一个特殊的自变量,而且它有一个专门的名字,叫within-Subject Factor,一般直译为“受试者内因素”。
SPSS中进行重复测量方差分析的具体操作可以参考链接(来源:医咖会),之后我们也考虑录制专门的视频进行讲解。
做过重复测量的同学可能知道,SPSS会输出很多结果,让人眼花缭乱,所以到底应该怎么看这些结果呢?
下面这张图给我们做了一个梳理,推荐给大家:
由上图可知,对于SPSS给出的一系列结果,大家应该首先找到“球形检验”的结果(Mauchly's Test of Sphericity):
球形检验结果,该例不满足球形假设(P小于0.05)
如果球形检验的P值(sig)大于0.05,称作数据满足球形假设,此时可直接看一元方差分析的结果(Tests of With-in Subjects Effects),而且是看第一行(Sphericity Assumed),根据其P值(sig)判断时间效应(time)、以及时间和分组的交互效应(time*group)。
如果球形检验的P值(sig)小于0.05,则称数据不满足球形假设,此时就需要结合多元方差分析和一元方差分析的矫正结果,一般两个结果会一致,如果不一致则以多元方差分析的结果为准。
结合本案例,因为其球形检验P值小于0.05,不符合假设,所以看多元方差分析或校正后的一元结果,如下图:
多元方差分析结果
一元方差分析结果(校正后)
蓝线代表右肺组;绿线代表全肺组
组间比较的单变量方差分析
可以发现,以上结果都显示差异有统计学意义(P<0.001),意味着:
1) 时间效应(time)具有统计学意义:即灌注海水后,犬肺的氧分压会随着灌注的时间的延长而逐渐下降,到灌注后60min达到最低;
2)交互效应(time*group)具有统计学意义:随着灌注时间的延长,单肺灌注与全肺灌注氧分压下降的幅度不同,从图形上看就是,直线的斜率不同,全肺灌注的犬氧分压下降幅度大(直线更陡峭)
3)单独组间效应(group)具有统计学意义:此处SPSS对多个因变量进行了数据变换,从而进行单变量方差分析,结果显示P<0.05,表明灌注部位会影响氧分压。
由此,对重复测量的方差分析进行一个简单总结:
重复测量方差分析最核心的功能是研究指标是否随着时间的变化而变化(time),拿到SPSS的分析结果,应该首先看“球形检验”,然后根据其结果,选择对应的分析表格。如果除了时间因素之外还有分组效应,则分析逻辑与单变量的单因素或多因素方差分析类似。
以上图片参考来自“医咖会”,如有侵权,请联系删除!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28