
matplotlib是我们经常会用到的一款python绘图库,操作简单,几行代码就能很轻松地画一些或简单或复杂地图形,线图、直方图、功率谱、条形图、错误图、散点图以及费笛卡尔坐标图等都不在话下。今天小编就具体给大家介绍一下matplotlib绘图教程。
一、首先来了解一下matplotlib
1.matplotlib是基于python语言的开源数据绘图包。matplotlib的对象体系严谨而有趣,为我们提供了巨大的发挥空间。在熟悉了核心对象之后,我们可以轻易的定制图像。matplotlib使用numpy进行数组运算,并调用一系列其他的python库来实现硬件交互。
2.matplotlib安装
pip install matplotlib
3.Matplotlib导入
import matplotlib.pyplot as plt#为方便简介为plt
import numpy as np#画图过程中会使用numpy
import pandas as pd#画图过程中会使用pandas
二、matplotlib绘图
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(figsize=(10,8)) #建立一个大小为10*8的画板 ax1 = fig.add_subplot(331) #在画板上添加3*3个画布,位置是第1个 ax2 = fig.add_subplot(3,3,2) ax3 = fig.add_subplot(3,3,3) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(3,3,5) ax6 = fig.add_subplot(3,3,6) ax7 = fig.add_subplot(3,3,7) ax8 = fig.add_subplot(3,3,8) ax9 = fig.add_subplot(3,3,9) ax1.plot(np.random.randn(10)) _ = ax2.scatter(np.random.randn(10),np.arange(10),color='r') #作散点图 ax3.hist(np.random.randn(20),bins=10,alpha=0.3) #作柱形图 ax4.bar(np.arange(10),np.random.randn(10)) #做直方图 ax5.pie(np.random.randint(1,15,5),explode=[0,0,0.2,0,0]) #作饼形图 x = np.arange(10) y = np.random.randn(10) ax6.plot(x,y,color='green') ax6.bar(x,y,color='k') data = DataFrame(np.random.randn(1000,10), columns=['one','two','three','four','five','six','seven','eight','nine','ten']) data2 = DataFrame(np.random.randint(0,20,(10,2)),columns=['a','b']) data.plot(x='one',y='two',kind='scatter',ax=ax7) #针对DataFrame的一些作图 data2.plot(x='a',y='b',kind='bar',ax=ax8,color='red',legend=False) data2.plot(x='a',y='b',kind='barh',color='m',ax=ax9) #plt.tight_layout() #避免出现叠影 #plt.show()
2.蜡烛图
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.finance as mpf from pandas import Series, DataFrame from matplotlib.pylab import date2num %matplotlib inline plt.rcParams['figure.autolayout'] = True plt.rcParams['figure.figsize'] = 25,6 plt.rcParams['grid.alpha'] = .4 plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = ['SimHei'] fig, ax = plt.subplots(1,1,figsize=(12,5)) mpf.candlestick_ohlc(ax=ax,quotes=data2.values[::3],width=.002,colorup='red',colordown='green') plt.xticks(data2.date[::25],data.date.map(lambda x:x[:5])[::25],rotation=0) ax.twiny().plot(data3.Open) plt.tight_layout();
3.热图
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt %matplotlib inline df = DataFrame(np.random.randn(10,10)) fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(111) axim = ax.imshow(df.values,interpolation='nearest')#cmap=plt.cm.gray_r, #cmap用来显示颜色,可以另行设置 plt.colorbar(axim) plt.show()
以上就是小编今天跟大家分享的matplotlib绘图的一些方法啦,希望对与大家使用matplotlib有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05