
Kmeans算法,又叫做K均值聚类算法,可以说是无监督聚类算法中最具代表性,最经典的聚类算法了,这一算法的主要作用是将相似的样本自动归到一个类别中。小编特意整理了这一经典聚类算法的基本原理供大家参考,希望对大家有所帮助。
一、首先来看一下Kmeans算法的效果
#通过简单的例子来直接查看K均值聚类的效果 from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np %matplotlib inline #聚类前 X = np.random.rand(100,2) plt.scatter(X[:,0],X[:,1], marker='o')
#聚类后 kmeans = KMeans(n_clusters=4).fit(X) label_pred = kmeans.labels_ plt.scatter(X[:,0],X[:,1],c=label_pred) plt.show()
二、Kmeans算法基本原理
假定给定数据样本X,包含了n个对象
其中每个对象都具有m个维度的属性。Kmeans算法的目标是将n个对象依据对象间的相似性聚集到指定的k个类簇中,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中。对于Kmeans,首先需要初始化k个聚类中心{C1.C2.C3....,Ck},1<k≤n,然后通过计算每一个对象到每一个聚类中心的欧式距离,如下式所示
依次比较每一个对象到每一个聚类中心的距离,将对象分配到距离最近的聚类中心的类簇中,得到k个类簇{S1.S2.S3....,Sk}
Kmeans算法用中心定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其计算公式如下
代码实现
Kmeans算法 % 输入: % data 输入的不带分类标号的数据 % K 数据一共分多少类 % iniCentriods 自行指定初始聚类中心 % iterations 迭代次数 % 输出: % Idx 返回的分类标号 % centroids 每一类的中心 % Distance 类内总距离 function [Idx,centroids,Distance]=KMeans(data,K,iniCentriods,iterations) [numOfData,numOfAttr]=size(data); % numOfData是数据个数,numOfAttr是数据维数 centroids=iniCentriods; %% 迭代 for iter=1:iterations pre_centroids=centroids;% 上一次求得的中心位置 tags=zeros(numOfData,K); %% 寻找最近中心,更新中心 for i=1:numOfData D=zeros(1,K);% 每个数据点与每个聚类中心的标准差 Dist=D; % 计算每个点到每个中心点的标准差 for j=1:K Dist(j)=norm(data(i,:)-centroids(j,:),2); end [minDistance,index]=min(Dist);% 寻找距离最小的类别索引 tags(i,index)=1;% 标记最小距离所处的位置(类别) end %% 取均值更新聚类中心点 for i=1:K if sum(tags(:,i))~=0 % 未出现空类,计算均值作为下一聚类中心 for j=1:numOfAttr centroids(i,j)=sum(tags(:,i).*data(:,j))/sum(tags(:,i)); end else % 如果出现空类,从数据集中随机选中一个点作为中心 randidx = randperm(size(data, 1)); centroids(i,:) = data(randidx(1),:); tags(randidx,:)=0; tags(randidx,i)=1; end end if sum(norm(pre_centroids-centroids,2))<0.001 % 不断迭代直到位置不再变化 break; end end %% 计算输出结果 Distance=zeros(numOfData,1); Idx=zeros(numOfData,1); for i=1:numOfData D=zeros(1,K);% 每个数据点与每个聚类中心的标准差 Dist=D; % 计算每个点到每个中心点的标准差 for j=1:K Dist(j)=norm(data(i,:)-centroids(j,:),2); end [distance,idx]=min(Dist);% 寻找距离最小的类别索引 distance=Dist(idx); Distance(i)=distance; Idx(i)=idx; end Distance=sum(Distance,1);% 计算类内总距离 end
二、Kmeans的优化算法
1.二分K-means算法
二分KMeans特点:解决K-Means算法对初始簇心比较敏感的问题,二分K-Means算法是一种弱化初 始质心的一种算法
二分Kmeans 具体思路步骤:
(1) 将所有样本数据放回到一个蔟队列中
(2) 队列中的一个蔟进行 k = 2 的KMeans算法聚类形成两个子蔟,将他们放回到蔟队列中
(3)重复这个步骤,直到中止条件达到(主要是聚簇数量)
选取队列蔟二划分的条件:
(1)选取蔟距离平方和SSE 最大的蔟进行二划分(优先)。
(2)选取样本较多的蔟进行二划分。
2.Kmeans++算法
K-Means++算法就是对K-Means随机初始化质心的方法的优化。K-Means++的对于初始化质心的优化策略也很简单,如下:
(1)从输入的数据点集合中随机选择一个点作为第一个聚类中心μ1
(2)
(3)选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
(4)重复2和3直到选择出k个聚类质心
(5)利用这k个质心来作为初始化质心去运行标准的K-Means算法
简单的来说, Kmeans++ 就是选择离已选中心点最远的点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09