
今天小编给大家带来的是现在非常火爆的机器学习方法——集成学习。集成学习,顾名思义,通过将多个单个学习器集成/组合在一起,使它们共同完成学习任务,有时也被称为“多分类器系统(multi-classifier system)”、基于委员会的学习(Committee-based learning)。
它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。也就是我们常说的“博采众长”。集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影。
一般集成学习会通过重采样获得一定数量的样本,然后训练多个弱学习器(分类精度稍大于50%),采用投票法,即“少数服从多数”原则来选择分类结果,当少数学习器出现错误时,也可以通过多数学习器来纠正结果。
集成学习分类
目前根据个体学习器的生成方式,集成学习可以分为两大类:
1)个体学习器之间存在较强的依赖性,必须串行生成的序列化方法:boosting类算法;
Boosting是一簇可将弱学习器提升为强学习器的算法。其工作机制为:先从初始训练集训练出一个基学习器,再根据基学习器的表现对样本分布进行调整,使得先前的基学习器做错的训练样本在后续收到更多的关注,然后基于调整后的样本分布来训练下一个基学习器;如此重复进行,直至基学习器数目达到实现指定的值T,或整个集成结果达到退出条件,然后将这些学习器进行加权结合。
2)个体学习器之间不存在强依赖关系,可以并行生成学习器:bagging和随机森林
Bagging的算法原理和 boosting不同,它的弱学习器之间没有依赖关系,可以并行生成。
Bagging的基本流程:
1.经过T轮自助采样,可以得到T个包含m个训练样本的采样集。
2.然后基于每个采样集训练出一个基学习器。
3.最后将这T个基学习器进行组合,得到集成模型。
随机森林(Random Forest,简称RF) 是Bagging的一个扩展变体。
随机森林对Bagging做了小改动:
1.Bagging中基学习器的“多样性”来自于样本扰动。样本扰动来自于对初始训练集的随机采样。
2.随机森林中的基学习器的多样性不仅来自样本扰动,还来自属性扰动。
3.这就是使得最终集成的泛化性能可以通过个体学习器之间差异度的增加而进一步提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08