
接着上文我们来聊一下“用户激活”这个话题,提到用户激活,怎么样的营销决策是好的呢?相信很多同学脑海都浮现一个词,没错,就是“Aha”时刻,用户激活是离不开Aha时刻的。
如何定义它呢?Aha(惊喜)时刻,就是新用户第一次认识到产品的价值,从而脱口说出“啊哈,原来这个产品可以帮我做这个啊”的那个时刻。
这是一个至关重要的时刻,他区分了那些从产品中发现了价值和那些没发现价值的用户。这也是一个“有感情”的时刻,用户觉得他从广告里看到的那些承诺,产品在这一刻都履行了,因此觉得满足甚至感到惊喜。
在这里给大家列举了几个知名产品的Aha时刻:
通过这些例子,大家不难发现定义Aha时刻的一些规律——那就是清晰、具体、可衡量,并且发生在用户体验的较早期,以及符合下面的描述:
(谁)在(多长时间内)完成(多少次)(什么行为)
不难看出,要找到以上信息来定义Aha时刻,需要三步:
第一步,定义一个关键行为;
第二步,找到关键行为的完成者;
第三步,需要明确规定在早期多长的时间内?并且在这段时间内用户需要完成多少次关键行为?
举个例子,对于各大社交网站如Facebook、Twitter来说这个关键行为是建立社交关系;对于企业软件Slack而言则是其核心功能:发送信息。让新用户通过采取某个特点行为迅速了解产品的价值所在,到达Aha时刻,这个行为就叫做“关键行为”。但是,每个产品的关键行为不同,要具体分析。小伙伴们可以带入性的来思考一下这几个问题:
1. 你希望用户每次使用产品时都做的行为是什么?
2. 用户做出了哪个行为更有可能长期留存下来?
3. 哪个指标是整个公司最在意的?哪个指标是你最希望提升的?哪些用户行为直接影响了这个指标?
4. 你有几个不同产品或者功能吗?他们都分别是什么?每个产品或者功能的成功指标是什么?和哪些用户行为相关?
通过以上问题找到了一些方向之后,我们要做的就是通过下面4步确认关键行为。
第一步,列出可能的关键指标;
第二步,通过数据分析筛选关键行为;
第三步,通过定性用户调研进一步确认关键行为;
第四步,找到关键行为和Aha时刻
那么,在了解新用户引导方面的激动指数时,我们首先要明确用户的初始激动指数,这个指数通常来自于品牌,广告设计和来源投放;其次,了解各个元素对激动指数的影响;最后,综合审计新用户激活漏斗的各个环节。
通过前面讲的内容,我们明确了新用户激活的重要性,知道了新用户激活的重要性,知道了如何找到Aha时刻,衡量新用户激活该采用哪些指标,下面我们通过一些具体的案例,介绍用户引导的四大原则和需要避免的八大误区。
原则一:增强动力。Uber的用户推荐流程巧妙利用推荐人的社会信任。
原则二:减少障碍。每一个障碍,用户都会消耗能量,其激动指数都会下降一点点。
原则三:适时助推。
原则四:私人订制。用户的偏好不同、背景不同、使用产品的目的不同,“千人一面”的新用户引导很可能不能满足每个用户的需求,这是需要引导个人化,最大化的满足用户需求,提高激活率。以下是几个成功案例:
除了四大原则外,在建立新用户引导流程时还应该注意避免下面的八大误区。
第一, 新用户注册和引导步骤太多,流程太长;
第二, 没有聚焦到一个关键行为上,想让新用户做的事情太多;
第三, 花太多时间教用户怎么做界面,而没有让用户使用产品;
第四, 让用户太快完成设置,没有给予足够的教育;
第五, 新用户注册太顺利了,没有设置必要的障碍筛选掉不合格的用户;
第六, 以“注册完成”为衡量新用户引导的标准,而不是“用户激活”;
第七, 对每个用户都统一对待;
第八, (最重要一点)完全照抄以上介绍的最佳实践,而不进行A/B测试。对于不了解A/B测试的同学可以关注小P的下一篇简读哟~讲解王晔老师的A/B测试。
写在最后:新用户激活是一个系统的工程,需要多个团队的参与、多个渠道的配合,并且不限于新用户注册的第一天,而是要延续到首周、首月,甚至是更长的时间段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11