京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上篇文章中介绍了matplotlib绘制直方图的前五个参数,实际上直方图一共有十几个参数,剩下的参数利用这篇文章解释清楚,让大家能够将如何绘制直方图理解的透透的。
这个参数的含义也很直观,底部的意思,指的是条形的底从哪里开始。这个参数接收标量和序列,或者None,默认为None,如果是标量,则所有条形的底都从同一个数值处开始,如果为序列,则可以指定每个条形的底不一致。
fig = plt.figure(figsize=(16,4))
pic1 = fig.add_subplot(131)
plt.hist(data,bins = 10)
plt.title("bottom默认None")
pic2 = fig.add_subplot(132)
plt.hist(data,bins = 10, bottom=10) # bottom=10,表示所有条形的底部从10开始,默认从0开始
plt.title("bottom=10")
pic3 = fig.add_subplot(133)
plt.hist(data,bins = 10, bottom=np.array([21, 20, 13, 17, 22, 32, 23, 15, 22, 15])) # bottom为序列,序列长度于条形的数量一致,表示每个条的底部从哪里开始
plt.title("bottom取值为序列");
上图是当bottom参数不同取值时绘制出来不同的直方图,第一幅图和第二幅图看起来长的一样,但是仔细观察下就能发现两幅图y轴的起始点时不一样的,第一幅图的起点时0.第二幅图的起点是10,因为bottom参数设置的为10;而第三幅图bottom的参数设置的序列,序列的长度和直方图的组数一致,即每个条形的起始点都不同,具体设置哪种比较好,还是要看具体的业务需求哦。
histtype参数控制的时直方图中条形的展现方式,它接收的参数是固定的字符串,其中常见的是以下两种形式:
fig = plt.figure(figsize=(9,4))
pic1 = fig.add_subplot(121)
plt.hist(data,bins = 10, histtype = "bar")
plt.title(' histtype = "bar"')
pic2 = fig.add_subplot(122)
plt.hist(data,bins = 10, histtype = "step") # histtype默认参数为”bar“,即条形,可以进行指定
plt.title(' histtype = "step"');
如果需要将折线图和直方图绘制到一副图中,可以考虑对条形的形式进行设置。
align参数控制的是条形的位置,能够接收的参数也是指定的字符串,通常大家都用默认值"mid",即中间,这样直方图中的条形会居于前后临界点的中间位置,是最常见的一种:
fig = plt.figure(figsize=(16,4))
pic1 = fig.add_subplot(131)
plt.hist(data,bins = 10, align = "left")
plt.xticks([150. , 152.9, 155.8, 158.7, 161.6, 164.5, 167.4, 170.3, 173.2,176.1, 179. ],rotation = 30)
plt.title("align ='left'")
pic2 = fig.add_subplot(132)
plt.hist(data,bins = 10, align = "right")
plt.xticks([150. , 152.9, 155.8, 158.7, 161.6, 164.5, 167.4, 170.3, 173.2,176.1, 179. ],rotation = 30)
plt.title("align ='right'")
pic3 = fig.add_subplot(133)
plt.hist(data,bins = 10, align = "mid")
plt.xticks([150. , 152.9, 155.8, 158.7, 161.6, 164.5, 167.4, 170.3, 173.2,176.1, 179. ],rotation = 30)
plt.title("align ='mid'");
由于原数据和分箱规则没有变化,所以三个直方图很相近,区别在于x轴上,这里为了能直观的看出区别,特意将每组的临界值添加到了x轴,仔细查看能够看出只有最后一个图才是我们常见的直方图,前两个条形的位置都有偏移。
对条形图比较熟悉的朋友可能对这个参数并不陌生,它是控制条形方向的参数,接收的是特定的字符,即条形的方向是垂直的还是水平的,一般默认绘制的都是垂直方向的,如果需要横向的直方图,直接设置这个参数就好。它接收的参数是指定的字符串,表明条形方向:
fig = plt.figure(figsize=(9,4))
pic1 = fig.add_subplot(121)
plt.hist(data,bins = 10) #默认条形方向为垂直方向
plt.title('orientation默认"vertical"')
pic2 = fig.add_subplot(122)
plt.hist(data,bins = 10,orientation = 'horizontal') # orientation = 'horizontal'表示条形为水平方向
plt.title('orientation = "horizontal"');
参数中可选的两个字符即是垂直还是水平。
从字面上看,这个参数是和宽度有关的,事实也的确是这样。这个参数可以设置条形的宽度,接收数值,但是它设置的宽度是相对于默认宽度而言的,重新设置的宽度是原宽度的几分之几,我们具体看一下代码:
fig = plt.figure(figsize=(9,4))
pic1 = fig.add_subplot(121)
plt.hist(data,bins = 10) #rwidth控制条形的相对宽度,不进行指定,自动计算
plt.title('rwidth默认"None"')
pic2 = fig.add_subplot(122)
plt.hist(data,bins = 10,rwidth=0.8) # 指定条形的相对宽度
plt.title('rwidth=0.8');
如果不进行设置,直方图的各个条形之间是没有空隙的,当我将rwidth设置成0.8之后,条形的宽度就只有原宽度的80%,条形之间也会出现缝隙。
log参数控制是否将刻度设置成对数刻度,接收布尔值,默认为False,进行普通刻度,一旦设置为True:
fig = plt.figure(figsize=(9,4))
pic1 = fig.add_subplot(121)
plt.hist(data,bins = 10)
plt.title('log默认"False"')
pic2 = fig.add_subplot(122)
plt.hist(data,bins = 10,log=True) # 直方图轴将设置为对数刻度。
plt.title('log=True"');
设置成对数刻度后,虽然分组情况没有变,但是分布状况还是发生了变化,如果设置了该参数,最好在标题或其他部分标注提示一下。
这个参数可以说是相当熟悉,很多函数中都有,表示对图形的颜色进行设置,没错的确是设置颜色,想起我们还有一个最开始的参数没有讲解,就在这里和color一起讲解了。
目前我们只有一组数据,现在呢假设有了两个学校学生的身高数据,喏,这就是第二个学校的学生身高了:
data1 = np.random.randint(150,180,200) data1
输出结果:
array([164, 171, 172, 161, 171, 175, 161, 170, 159, 163, 154, 162, 156,
158, 160, 156, 163, 167, 170, 168, 163, 171, 174, 161, 156, 167,
165, 169, 162, 176, 167, 157, 157, 169, 160, 177, 162, 154, 163,
168, 155, 177, 151, 155, 179, 166, 170, 168, 158, 167, 156, 170,
163, 157, 172, 169, 156, 171, 155, 160, 177, 164, 157, 160, 173,
175, 164, 168, 171, 158, 163, 162, 167, 167, 169, 155, 175, 171,
162, 174, 165, 179, 167, 179, 168, 157, 151, 151, 171, 170, 168,
165, 167, 179, 153, 177, 165, 155, 153, 157, 162, 167, 173, 161,
171, 159, 165, 152, 160, 172, 154, 157, 176, 152, 171, 161, 169,
154, 171, 150, 158, 164, 150, 170, 153, 162, 150, 174, 150, 176,
167, 171, 164, 170, 171, 163, 162, 164, 174, 157, 179, 166, 150,
170, 166, 161, 155, 175, 163, 156, 152, 159, 168, 158, 176, 159,
158, 169, 155, 166, 151, 163, 177, 154, 170, 152, 167, 172, 170,
163, 161, 177, 164, 160, 157, 167, 163, 177, 169, 162, 166, 158,
156, 168, 169, 168, 159, 159, 154, 169, 168, 169, 156, 165, 173,
175, 169, 156, 158, 154])
到这里是不是有点明白了,直方图不止可以对一组数据进行绘图,多组数据也是可以的,参数x可以接收多组数据,如果是多组数据需要将多组数据打包到一起作为一个整体传给参数x:
fig = plt.figure(figsize=(16,4))
pic1 = fig.add_subplot(131)
plt.hist(data,bins = 10)
plt.title("color默认None")
pic2 = fig.add_subplot(132)
plt.hist(data,bins = 10, color="r") # 设置颜色为红色
plt.title("color="r"")
pic3 = fig.add_subplot(133)
plt.hist([data,data1],bins = 10, color=["c","orange"])
# color取值为序列,每个数据集对应一种颜色,color序列的长度与数据集个数一致
plt.title("color取值为序列");
能够看到,如果只有一组数据,color参数也就只接收一个颜色指定,如果是多组数据,可以对每个数据集的颜色进行指定,具体需要注意的点已经在代码中备注了哦。
label参数也不是陌生的参数,是对标签的设定,接收的是字符串,并没有什么特殊,但是需要注意的是如果设置了这个参数,记得调用plt.lenged()显示图例,如果不调用即使设置了标签也不能作为图例显示在图形中。而显示图例除了直接在直方图函数中设置label参数外,还可以在plt.lenged()中设置,具体的区别还是看代码吧:
fig = plt.figure(figsize=(11,4))
pic1 = fig.add_subplot(121)
plt.hist([data,data1],bins = 10, color=["c","orange"],label=["data","data1"])
plt.legend()
plt.title('hist函数中设置label参数')
pic2 = fig.add_subplot(122)
plt.hist([data,data1],bins = 10, color=["c","orange"])
plt.legend(["data","data1"])
plt.title('legend函数中设置label参数');
效果是一样的。
这个参数的字面意思也很直观,表示是否要堆叠,接收布尔值。需要注意的是如果绘图只用了一个数据集,那么这个参数无论设置成什么都没有影响,如果要堆叠至少需要两个数据集才能显示出区别:
fig = plt.figure(figsize=(9,4))
pic1 = fig.add_subplot(121)
plt.hist([data,data1],stacked=False) #默认多组数据并列排列
plt.title('stacked默认"False"')
pic2 = fig.add_subplot(122)
plt.hist([data,data1],stacked=True) #多组数据彼此堆叠
plt.title('stacked=True"');
区别是不是很明显了,堆叠的意思也容易理解了对不对?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05